• Title/Summary/Keyword: complex mode shapes

Search Result 74, Processing Time 0.026 seconds

Design of Multi-Input Multi-Output Positive Position feedback Controller based on Block-Inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.508-514
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi input and multi output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments..

  • PDF

Dynamic Characteristics Analysis for the Online Monitoring System Designing KTX MRU and Improvement of the Stability Related Variable High Speed (고속열차 감속기의 상시감시시스템 설계 및 가변속주행시 안정성 향상을 위한 동특성해석)

  • Park, Byung Su;Kim, Jin Woo;Choi, Sang Rak;Song, Young Chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • MRU(motor reduction unit) for KTX is a assembled complex structure that is equipped with a lot of parts at the express train KTX and that is the core power source operating variable speeds. This study is recorded the dynamic characteristics analysis results tested by EMA which is done through the parts and assembly test, transient analysis and stoped train test in order to design the online monitoring system for KTX MRU. And the mode shapes result from critical vibration frequency explain the relation with variable speeds of express train over 250 km/hr. Also these variable speeds make variable operational frequencies at pinion, axle gear mesh frequency and normal bearing fault frequencies. As the specified speed can make resonance with natural frequencies of the MRU, for the train operating stability, this study also presents the MRU's critical speeds calculated by the each train speed.

On the accuracy of estimation of rigid body inertia properties from modal testing results

  • Ashory, M.R.;Malekjafarian, A.;Harandi, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.53-65
    • /
    • 2010
  • The rigid body inertia properties of a structure including the mass, the center of gravity location, the mass moments and principal axes of inertia are required for structural dynamic analysis, modeling of mechanical systems, design of mechanisms and optimization. The analytical approaches such as solid or finite element modeling can not be used efficiently for estimating the rigid body inertia properties of complex structures. Several experimental approaches have been developed to determine the rigid body inertia properties of a structure via Frequency Response Functions (FRFs). In the present work two experimental methods are used to estimate the rigid body inertia properties of a frame. The first approach consists of using the amount of mass as input to estimate the other inertia properties of frame. In the second approach, the property of orthogonality of modes is used to derive the inertia properties of a frame. The accuracy of the estimated parameters is evaluated through the comparison of the experimental results with those of the theoretical Solid Work model of frame. Moreover, a thorough discussion about the effect of accuracy of measured FRFs on the estimation of inertia properties is presented.

A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure (동적 구조물의 구조변화에 의한 진동해석 연구)

  • 현천성;이기형;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2033-2048
    • /
    • 1992
  • This paper presents the theoretical development and qualitative evaluation of a new concept in the mathematical modeling of dynamic structures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of predicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the tests were varied by selecting different numbers of points of measurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theoretical development be continued and that applications to more complex structures be carried out in order to develop a better understanding of the limitations and capabilities of the method. A successful, more definitive sevaluation could lead to immediate practical applications.

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part I ; A Driving Motor-Bull Gear Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part I : 구동 모터-불기어 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • A rotordynamic analysis is performed with a motor-bull gear rotor system supported on two partial bearings, which is intended to drive a high-speed turbo-chiller compressor impeller shaft through its built-in pinion gear. The motor-bull gear rotor system has a rated speed of 3,600 rpm, and is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support partial bearings are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the motor-bull gear rotor-bearing system is carried out to evaluate its whirl natural frequencies and mode shapes and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regradless of operating conditions, i.e., loads and operating speeds.

  • PDF

Determination of Degraded Properties of Vibrating Laminated Composite Plates for Different Layup Sequences (적층배열 변화에 따른 진동하는 복합재료 적층 구조의 미시역학적 물성변화 추정)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • This paper presents a method to detect the fiber property variation of laminated GFRP plates from natural frequency response data. The combined finite element analysis using ABAQUS and the inverse algorithm described in this paper may allow us not only to detect the deteriorated elements from the mirco-mechanical point of view but also to find their numbers, locations, and the extent of damage. To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. Several numerical results show that the proposed system is computationally efficient in identifying fiber stiffness degradation for complex structures such as composites with various layup sequences.

Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study

  • Kaloop, Mosbeh R.;Elsharawy, Mohamed;Abdelwahed, Basem;Hu, Jong Wan;Kim, Dongwook
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.667-680
    • /
    • 2020
  • This study aims at reporting a systematic procedure for evaluating the static and dynamic structural performance of steel bridges based on a short-period structural health monitoring measurement. Sungsu bridge located in Korea is considered as a case study presenting the most recent tests carried out to examine the bridge condition. Short-period measurements of Structural Health Monitoring (SHM) system were used during the bridge testing phase. A novel symmetry index is introduced using statistical analyses of deflection and strain measurements. Frequency Domain Decomposition (FDD) is implemented to the strain measurements to estimate the bridge mode shapes and damping ratios. Furthermore, Markov Chain Monte Carlo (MCMC) is also implemented to examine the reliability of bridge performance while ambient design trucks are in static or moving at different speeds. Strain, displacement and acceleration were measured at selected locations on the bridge. The results show that the symmetry index can be an efficient and useful measure in assessing the steel bridge performance. The results from the used method reveal that the performance of the Sungsu bridge is safe under operational conditions.

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Dynamic Characteristics Identification of Cylindrical Structure Using Dynamic Substructuring Method (Dynamic Substructuring 기법을 이용한 원통형 구조물의 동특성 확인)

  • Choi, Youngin;Park, No-Cheol;Lee, Sang-Jeong;Park, Young-Pil;Kim, Jinsung;Park, Chanil;Roh, Woo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.106-109
    • /
    • 2014
  • In order to obtain dynamic behaviors of complex structures, it demands large amounts computational cost and time to perform the numerical analysis. The model reduction method helps these problems by dividing the full model into primary and unnecessary parts. In this research, we perform the modal analysis using the dynamic substructuring method, which is one of the model reduction methods, in order to obtain the dynamic characteristics of the cylindrical structures efficiently. To select the master degrees of freedom (dofs), we consider the mode shapes of the cylindrical structures. And then, we identify the validity of the dynamic substructuring method by applying the method to the simple cylinder and core support barrel (CSB) which is one of the reactor internals with the cylindrical shape. The results demonstrate that the dynamic characteristics from the dynamic substructuring method are well matched with the original method.

  • PDF

Design of Multi-input Multi-output Positive Position Feedback Controller Based on Block-inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1037-1044
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi-input and multi-output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.