• 제목/요약/키워드: complex load

검색결과 949건 처리시간 0.025초

일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode)

  • 이성범;최종근;민제홍
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.204-209
    • /
    • 2003
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important for dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations. Therefore, by modifying the constitutive equation fur a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation for radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed, Solutions were allowed fur comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석 (Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method)

  • 박일경;김성준;안석민
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구 (A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor)

  • 고종선;윤성구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode)

  • 이성범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.415-419
    • /
    • 2003
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important for dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement for radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

Numerical study of concrete-encased CFST under preload followed by sustained service load

  • Li, Gen;Hou, Chao;Han, Lin-Hai;Shen, Luming
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.93-109
    • /
    • 2020
  • Developed from conventional concrete filled steel tubular (CFST) members, concrete-encased CFST has attracted growing attention in building and bridge practices. In actual construction, the inner CFST is erected prior to the casting of the outer reinforced concrete part to support the construction preload, after which the whole composite member is under sustained service load. The complex loading sequence leads to highly nonlinear material interaction and consequently complicated structural performance. This paper studies the full-range behaviour of concrete-encased CFST columns with initial preload on inner CFST followed by sustained service load over the whole composite section. Validated against the reported data obtained from specifically designed tests, a finite element analysis model is developed to investigate the detailed structural behaviour in terms of ultimate strength, load distribution, material interaction and strain development. Parametric analysis is then carried out to evaluate the impact of significant factors on the structural behaviour of the composite columns. Finally, a simplified design method for estimating the sectional capacity of concrete-encased CFST is proposed, with the combined influences of construction preload and sustained service load being taken into account. The feasibility of the developed method is validated against both the test data and the simulation results.

일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode)

  • 이성범;류재평
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.703-708
    • /
    • 2002
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of Elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation fur elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations and is hence unsuitable. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation fur radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

전ㆍ후방 캔 압출공정의 성형하중특성 (Characteristics of Forming toad in Forward and Backward Can Extrusion Processes)

  • 최호준;함병수;옥정한;심지훈;김성현;황병복
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.689-695
    • /
    • 2004
  • This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion process. The analysis in this paper is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can part with different outer diameters are categorized to investigate quantitatively the forming load, forming energy and maximum pressure exerted on the die-material interface. The categorized processes are composed of combined and/or some basic extrusion processes. After the analysis of the forming load characteristics, the frame capacity of press suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is also suggested that different load capacities be selected for different dimensions of a part such as the wall thickness in forward direction. The work in this paper could be a good reference for analysis of complex extrusion and selection of proper frame capacity of press to achieve low production cost and thus high productivity.

A Study of a Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode

  • Lee, Seong-Beom;Park, Jong-Keun;Min, Je-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권2호
    • /
    • pp.16-21
    • /
    • 2004
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. The relation between the load applied to the shaft or sleeve and the relative displacement of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem fur the bushing response leads to the load-displacement relation, which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation for radial response of the bushing. After the load relaxation function for the bushing was obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of the modified Lianis model and those of the proposed model. It was shown that the proposed Pipkin-Rogers model was in very good agreement with the modified Lianis model.

Load Allocation Strategy for Command and Control Networks based on Interdependence Strength

  • Bo Chen;Guimei Pang;Zhengtao Xiang;Hang Tao;Yufeng Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2419-2435
    • /
    • 2023
  • Command and control networks(C2N) exhibit evident multi-network interdependencies owing to their complex hierarchical associations, interleaved communication links, and dynamic network changes. However, the existing command and control networks do not consider the effects of dependent nodes on the load distribution. Thus, we proposed a command and control networks load allocation strategy based on interdependence strength. First, a new measure of interdependence strength was proposed based on the edge betweenness, which was followed by proposing the inter-layer load allocation strategy based on the interdependence strength. Eventually, the simulation experiments of the aforementioned strategy were designed to analyze the network invulnerability with different initial load capacity parameters, allocation model parameters, and allocation strategies. The simulation indicates that the strategy proposed in this study improved the node survival rate of the interdependent command and control networks model and successfully prevented cascade failures.