• Title/Summary/Keyword: complex geometries

Search Result 200, Processing Time 0.024 seconds

Molecular Orbital Study of Bonding and Stability on Rh(Ⅰ)-Alkyne Isomers

  • 강성권;송진수;문정현;윤석성
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1149-1153
    • /
    • 1996
  • Ab initio and extended Huckel calculations were carried out on the isomers of trans-RhCl(η2-C2H2)(PH3)2 (1). Due to π-back donation in 1 complex, the rotational energy barrier of alkyne ligand is computed to be in the range of 18.6-25.2 kcal/mol at MP4 levels. The optimized hydrido-alkynyl complex (2) at ab initio level has the distorted trigonal bipyramidal structure. Vinylidene complex (3) is computed to be more stable than 1 complex by 17.1 kcal/mol at MP4//MP2 level. The stabilities of isomers show similar trend at the various level calculations, that is, EHT, MP4//HF, and MP4//MP2 levels. The optimized geometries at ab initio level are in reasonable agreement with experimental data. A detailed account of the bonding in each isomers (1-3) have been carried out in terms of orbital analyses.

Material feature representation and identification with composite surfacelets

  • Huang, Wei;Wang, Yan;Rosen, David W.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.370-384
    • /
    • 2016
  • Computer-aided materials design requires new modeling approaches to characterize and represent fine-grained geometric structures and material compositions at multiple scales. Recently, a dual-Rep approach was developed to model materials microstructures based on a new basis function, called surfacelet. As a combination of implicit surface and wavelets, surfacelets can efficiently identify and represent planar, cylindrical, and ellipsoidal geometries in material microstructures and describe the distribution of compositions and properties. In this paper, these primitive surfacelets are extended and composite surfacelets are proposed to model more complex geometries. Composite surfacelets are constructed by Boolean operations on the primitives. The surfacelet transform is applied to match geometric features in three-dimensional images. The composition of the material near the identified features can then be modeled. A cubic surfacelet and a v-joint surfacelet are developed to demonstrate the reverse engineering process of retrieving material compositions from material images.

The Application of Cartesian Cut Cell Method for a High-Voltage GCB (분할격자법을 이용한 초고압 가스차단기 유동해석)

  • Lee Jong C.;Ahn Heui-Sub;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.91-94
    • /
    • 2002
  • It is important to develop new effective technologies for increasing the interruption capacity and reducing the size of a GCB (Gas Circuit Breaker). It is not easy to test the real GCB model in practice as in theory. Therefore, a simulation tool based on a CFD (Computational Fluid Dynamics) algorithm has been developed to facilitate an optimization of the interrupter. But the choice of grid is not at all trivial in the complicated geometries like a GCB. In this paper, we have applied a CFD-CAD integration using Cartesian cut-cell method, which is one of the grid generation techniques for dealing with complex and multi-component geometries.

  • PDF

Numerical Wave Refraction Model (굴절에 의한 천해파 계정법)

  • 서승남;오병철;강시환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 1989
  • A simple numerical refraction model is presented. The model takes into account refraction, shoaling and bottom dissipation. Eikonal equation and equation of energy conservation are discretized by an explicit finite-difference method, which provides wave angle and height at each grid point, respectively. Applications of the model were made to simple geometries as well as complex geometries, and some advantages on computing time and stability have been observed.

  • PDF

Conformational Investigations of HMPAO Isomers and Their Zinc(II) Complexes

  • Ruangpornvisuti, Vithaya;Pulpoka, Buncha;Tuntulani, Thawatchai;Thipyapong, Khajadpai;Suksai, Chomchai
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.555-562
    • /
    • 2002
  • Isomers based on the RS and EZ geometrical isomerism of the neutral, deprotonated species of HMPAO and their complexes with zinc(Ⅱ) ion have been investigated by semiempirical AM1 optimization method. The Hartree-Fock energies on AM1 geometries o f HMPAO species were calculated with HF/6-31G* methods. Twenty-two isomers of the neutral and twenty isomers of the deprotonated species of HMPAO have been found. The presence of four EE-series isomers of both zinc(Ⅱ) complexes with the neutral and deprotonated HMPAO have been expected and the SREE typical isomer of both types of complexes is the most stable isomer. Energies of complexation of zinc(Ⅱ)/HMPAO isomers with AM1 geometries were calculated by HF/ 6-31G*method. Due to the complexations with zinc(Ⅱ), the structural reorganizations of some isomers of the neutral HMPAO have been occurred. The optimized geometrical parameters of the related conformations have been discussed in terms of their stabilities and existences.

Quantum Mechanical Studies for Structures and Energetic of Double Proton Transfer in Biologically Important Hydrogen-bonded Complexes

  • Park, Ki-Soo;Kim, Yang-Soo;Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3634-3640
    • /
    • 2011
  • We have performed quantum mechanical calculations to study the geometries and binding energies of biologically important, cyclic hydrogen-bonded complexes, such as formic acid + $H_2O$, formamidine + $H_2O$, formamide + $H_2O$, formic acid dimer, formamidine dimer, formamide dimer, formic acid + formamide, formic acid + formamidine, formamide + formamidine, and barrier heights for the double proton transfer in these complexes. Various ab initio, density functional theory, multilevel methods have been used. Geometries and energies depend very much on the level of theory. In particular, the transition state symmetry of the proton transfer in formamidine dimer varies greatly depending on the level of theory, so very high level of theory must be used to get any reasonable results.

Development of the CFD Program for the Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 위한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, J.C.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.30-32
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. This technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increase.

  • PDF

Synthesis, spectral, thermal, structural study and theoretical treatment of new complexes of mannich base with Ni(II) and study of cytotoxicity effect on (Hepa-2) cell line and antimicrobial activity

  • Omar H. Al-Obaidi
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2023
  • The synthesis of the Mannich base as a ligand (L) N-(morpholino (phenyl) methyl) acetamide is the subject of this study. Elemental analyses, FT-IR spectra, UV-vis, 1H-NMR, and magnetic measurements were used to confirm the synthesis of the [Ni(L)2]Cl2 complex, thermal analysis (TG/DTG), atomic absorption, and scanning, and structurally explained as electron microscopy (SEM), and X-ray powder diffraction (XRD) methods. The melting point of the complex and its molar conductivity were also measured. The suggested geometries of the complexes formed have a tetrahedral structure, according to the data acquired using various techniques. Theoretical approaches to the complex formation have been investigated. For molecular mechanics and semi-empirical calculations, the HYPERCHEM6 program had been used. The effect of the novel Ni(II) complex on the cancer cell Hepa-2 (human hepatocellular ademocarcinoma), that is the human laryngeal cancer, was studied. It has been found that these ligand and complex have potent effects on the cancer cell. The antibacterial activity of the free ligand and its complex was evaluated against two kinds of human pathogenic bacteria. The first category is Gram-positive (Staphylococcus aureas, epiderimids), whereas the second group is Gram-negative (Psedamonas aeruginosa, Escherichia coli) (from the diffusion method). Finally, it was discovered that various chemicals had varied growth-inhibiting effects on bacteria.

Complex Formation of 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane with Some Transition Metal Ions (전이금속이온과 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane과의 착물형성)

  • Cheul-Gyu Chang;Young-Kook Shin;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.526-531
    • /
    • 1986
  • The stability constants of 1,15-diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdien H$_4$, L) with transition metal ions such as $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ have been determined by potentiometry in 95% methanol solution at 25$^{\circ}$C. The complex formation of the NenOdien $_4$ with the transition metal ions depends on the basicity of the donor atoms. The order of complex stability was Co(II) < Ni(II) < Cu(II) > Zn(II). The geometries of the complexes in solid state were discussed by visible-near infrared and infrared spectrophotometry, elemental analysis and electro-conductivity. The results suggest that the geometries of the solid complexes are octahedral for $[CoL_2(OH_2)Cl]Cl{\cdot}2H_2O$, $[NiL_2(OH_2)Cl]Cl{\cdot}2H_2O$, and $[ZnLCl_2]{\cdot}\frac{1}{2}H_2O$ and square pyramidal for [CuLCl]Cl, respectively.

  • PDF

Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures

  • Bae, Chang-Jun;Ramachandran, Arathi;Chung, Kyeongwoon;Park, Sujin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • Ceramic processing to fabricate 3D complex ceramic structures is crucial for structural, energy, environmental, and biomedical applications. A unique process is ceramic stereolithography, which builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This approach directly writes layers in liquid ceramic suspension and allows one to fabricate ceramic parts and products having more accurate, complex geometries and smooth surfaces. In this paper, both UV curable materials and processes are presented. We focus on the basic material principles associated with free radical polymerization and rheological behavior, cure depth and broadening of cured lines, scattering at ceramic interface and their corresponding simulation. The immediate potentials for ceramic AM to change industry fabrication are also highlighted.