DOI QR코드

DOI QR Code

Quantum Mechanical Studies for Structures and Energetic of Double Proton Transfer in Biologically Important Hydrogen-bonded Complexes

  • Park, Ki-Soo (Department of Applied Chemistry, Kyung Hee University) ;
  • Kim, Yang-Soo (Department of Applied Chemistry, Kyung Hee University) ;
  • Kim, Kyung-Hyun (Department of Applied Chemistry, Kyung Hee University) ;
  • Kim, Yong-Ho (Department of Applied Chemistry, Kyung Hee University)
  • Received : 2011.08.02
  • Accepted : 2011.08.11
  • Published : 2011.10.20

Abstract

We have performed quantum mechanical calculations to study the geometries and binding energies of biologically important, cyclic hydrogen-bonded complexes, such as formic acid + $H_2O$, formamidine + $H_2O$, formamide + $H_2O$, formic acid dimer, formamidine dimer, formamide dimer, formic acid + formamide, formic acid + formamidine, formamide + formamidine, and barrier heights for the double proton transfer in these complexes. Various ab initio, density functional theory, multilevel methods have been used. Geometries and energies depend very much on the level of theory. In particular, the transition state symmetry of the proton transfer in formamidine dimer varies greatly depending on the level of theory, so very high level of theory must be used to get any reasonable results.

Keywords

References

  1. Kim, Y. J. Am. Chem. Soc. 1996, 118, 1522. https://doi.org/10.1021/ja953175v
  2. Scherer, G.; Limbach, H.-H. J. Am. Chem. Soc. 1989, 111, 5946. https://doi.org/10.1021/ja00197a068
  3. Scherer, G.; Limbach, H.-H. J. Am. Chem. Soc. 1994, 116, 1320.
  4. Schlabach, M.; Limbach, H.-H.; Bunnenberg, E.; Shu, A. Y. L.; Tolf, B.-R.; Djerassi, C. J. Am. Chem. Soc. 1993, 115.
  5. Gerritzen, D.; Limbach, H.-H. J. Am. Chem. Soc. 1984, 106, 869. https://doi.org/10.1021/ja00316a007
  6. Fu, A.-P.; Li, H.-L.; Du, D.-M.; Zhou, Z.-Y. Chem. Phys. Lett. 2003, 382, 332. https://doi.org/10.1016/j.cplett.2003.10.070
  7. Kim, Y.; Lim, S.; Kim, H.-J.; Kim, Y. J. Phys. Chem. A 1999, 103, 617. https://doi.org/10.1021/jp983636+
  8. Lim, J.-H.; Lee, E. K.; Kim, Y. J. Phys. Chem. A 1997, 101, 2233. https://doi.org/10.1021/jp9626226
  9. Kim, Y. J. Phys. Chem. A 1998, 102, 3025. https://doi.org/10.1021/jp9733072
  10. Kim, Y.; Lim, S.; Kim, Y. J. Phys. Chem. A 1999, 103, 6632. https://doi.org/10.1021/jp990398p
  11. Podolyan, Y.; Gorb, L.; Leszczynski, J. J. Phys. Chem. A 2002, 106, 12103. https://doi.org/10.1021/jp021666d
  12. Hrouda, V.; Florian, J.; Polasek, M.; Hobza, P. J. Phys. Chem.1994, 98, 4742. https://doi.org/10.1021/j100068a042
  13. Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe, K. J. Chem. Phys. 1999, 110, 11906. https://doi.org/10.1063/1.479130
  14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Rob, M. A.; Cheeseman, J. R.; Jr., J. A. M.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc.: Wallingford, CT, 2003.
  15. Fast, P. L.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 6111. https://doi.org/10.1021/jp000408i
  16. Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 4786. https://doi.org/10.1021/jp049253v
  17. Fast, P. L.; Corchado, J. C.; Sánchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 5129. https://doi.org/10.1021/jp9903460
  18. Zhao, Y.; Rodger, J. M.; Lynch, B. J.; Fast, P. L.; Pu, J.; Chuang, Y.-Y.; Truhlar, D. G. Multilevel 4.0, University of Minnesota: Minneapolis, MN, 2004.
  19. Zhao, Y.; Truhlar, D. G. Mlgauss 2.0, University of Minnesota: Minneapolis, MN, 2007.
  20. Xu, X.; Alecu, I. M.; Truhlar, D. G. J. Chem. Theory Comput. 2011, 7, 1667. https://doi.org/10.1021/ct2001057
  21. Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926. https://doi.org/10.1063/1.1386416
  22. Antony, J.; Grimme, S. PCCP 2006, 8, 5287. https://doi.org/10.1039/b612585a
  23. Hargis, J. C.; Vohringer-Martinez, E.; Woodcock, H. L.; Toro- Labbé, A.; Schaefer, H. F. J. Phys. Chem. A 2011, 115, 2650. https://doi.org/10.1021/jp111834v
  24. Jurecka, P.; Hobza, P. Chem. Phys. Lett. 2002, 365, 89. https://doi.org/10.1016/S0009-2614(02)01423-9
  25. Jurecka, P.; Sponer, J.; Cern, J.; Hobza, P. PCCP 2006, 8, 1985. https://doi.org/10.1039/b600027d
  26. Sponer, J.; Hobza, P. J. Phys. Chem. A 2000, 104, 4592. https://doi.org/10.1021/jp9943880
  27. Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415. https://doi.org/10.1021/ct049851d
  28. Fogarasi, G. J. Mol. Struct. 2010, 978, 257. https://doi.org/10.1016/j.molstruc.2010.02.065
  29. Zhang, Q.; Bell, R.; Truong, T. N. J. Phys. Chem. 1995, 99, 592. https://doi.org/10.1021/j100002a022

Cited by

  1. Solvent Dependence of Double Proton Transfer in the Formic Acid–Formamidine Complex: Path Integral Molecular Dynamics Investigation vol.121, pp.39, 2017, https://doi.org/10.1021/acs.jpca.7b07010
  2. Effects of Positive and Negative Ionization on Prototropy in Pyrimidine Bases: An Unusual Case of Isocytosine vol.122, pp.39, 2018, https://doi.org/10.1021/acs.jpca.8b07539
  3. The Role of Proton Transfer on Mutations vol.7, pp.None, 2011, https://doi.org/10.3389/fchem.2019.00536
  4. Synthesis, microwave spectra, x-ray structure, and high-level theoretical calculations for formamidinium formate vol.150, pp.9, 2011, https://doi.org/10.1063/1.5081683