• Title/Summary/Keyword: complex environmental control

Search Result 375, Processing Time 0.022 seconds

Exposure to PAHs and VOCs in Residents near the Shinpyeong·Jangrim Industrial Complex (신평·장림 산단 인근 주민의 PAHs 및 VOCs 노출)

  • Yoon, Mi-Ra;Jo, HyeJeong;Kim, GeunBae;Chang, JunYoung;Lee, Chul-Woo;Lee, Bo-Eun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.131-143
    • /
    • 2021
  • Objectives: This study aims to investigate the atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) and the urinary concentration of biomarkers in residents near the Shinpyeong·Jangrim Industrial Complex to compare them with those of residents in a control area. Methods: Hazardous air pollutants (PAHs and VOCs) were measured in an exposure area (two sites) and a control area (one site). Urine samples were collected from residents near the industrial complex (184 persons) and residents in the control area (181 persons). Multiple linear regression analysis was used to identify which factors affected the concentration of PAHs and VOCs metabolites. Results: The average atmospheric concentration of PAHs in Shinpyeong-dong and Jangrim-dong was 0.45 and 0.59 ppb for pyrene, 0.15 and 0.16 ppb for benzo[a]pyrene, and 0.29 and 0.35 ppb for dibenz[a,h]anthracene. The average atmospheric concentration of VOCs was 1.10 and 0.99 ppb for benzene, 8.22 and 11.30 ppb for toluene, and 1.91 and 3.05 ppb for ethylbenzene, respectively. The concentrations of PAHs and VOCs in residents near the Shinpyeong·Jangrim Industrial Complex were higher than those of residents in the control area. Geometric means of urinary 2-hydroxyfluorene, 1-hydroxypyrene, methylhippuric acid, and mandelic acid concentrations were 0.45, 0.22, 391.51, and 201.36 ㎍/g creatinine, respectively. Those levels were all significantly higher than those in the control area (p<0.05). In addition, as a result of multiple regression analysis, even after adjusting for potential confounding factors such as gender and smoking, the concentration of metabolites in urine was high in residents near the Shinpyeong·Jangrim Industrial Complex. Conclusion: The results of this study show the possibility of human exposure to VOCs in residents near the Shinpyeong·Jangrim Industrial Complex. Therefore, continuous monitoring of the local community is required for the management of environmental pollutant emissions.

Development of Environmental Control Systems for Windowless Pig-housing (I) - Assessment of Control Performance - (무창돈사의 환경제어 시스템 개발 (I) - 제어성능의 평가 -)

  • 장홍희;장동일;임영일
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.415-424
    • /
    • 1999
  • This study was conducted to assess performances of the developed environmental control systems under various seasons of Korea. In all trials for the environmental control systems, the manure pit ventilation system in the windowless pig-housing with partly slatted floor was used. Consequently, under all seasons of Korea, the complex environmental control systems could comfortably maintain the indoor temperature (14.8~27.2$^{\circ}C$) , concentrations of noxious gases (CO2 gas : 631~1,874ppm, NH3 gas : 0.3~3.2ppm), air velocity (0.11~0.23m/s), air movement, and so on. Therefore, the performances of the complex environmental control systems were evaluated as proper as the intended.

  • PDF

Development of Environmental Control Systems for Windowless Pig-housing (II) - Growth Performance of Weaned Piglets and Growing Pigs - (무창돈사의 환경제어 시스템 개발 (II) - 자돈과 육성돈의 사양성적 -)

  • 장동일;장홍희;임영일;박창식;이봉덕;이형석
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.425-430
    • /
    • 1999
  • Complex environmental control systems were developed, which control properly the pig's environment in windowless pig-housing based on the thermoregulatory behaviors of pigs and concentrations of noxious gases (CO2 and NH3). The this study was conducted to assess the performance of complex environmental control systems by raising weaned piglets and growing pigs under different seasonal conditions. Average daily gain of pigs in the experimental pig-housing was slightly higher than that of pigs in the conventional pig-housing. Average daily gain was not significantly different in winter and spring(P>0.05), but was significantly different in summer(P<0.05). Feed conversion rate of pigs in the experimental pig-housing was smaller than that of pigs in the conventional pig-housing. Feed conversion rate was not significantly different in environment for weaned piglets and growing pigs resulted in the improved daily gain, feed conversion rate, and carcass quality of the finishing pigs. These results showed that the performance of the complex environmental control systems in windowless pig-housing was excellent for weaned piglets and growing pigs.

  • PDF

Pine Needle Oil and Korean Medicinal Herb Complex Protect Hyperlipidemia and Liver Cell Damage Induced by Alcohol

  • Park, Kap-Joo;Kim, Kang-Sung;Ahn, Ki-Heung;Rhee, Joon-Shick
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.410-414
    • /
    • 2003
  • The effect of treatment with pine needle oil complex (complex of pine needle oil and Korean medicinal herbs) upon rat hepatocytes exposed to alcohol was investigated. We compared body weight gain and ratios of liver and kidney to body weight and the serum biochemistry of rats administered both alcohol and Pine needle oil complex to control rats treated with alcohol alone. Pine needle oil complex treatment resulted in a significant reduction in the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and triglycerides (TG) compared to the control rats. These data suggest that Pine needle oil complex represents an excellent candidate for protection of rat hepatocytes from alcohol-mediated damage.

Exposure Assessment of Heavy Metals using Exposure Biomarkers among Residents Living Near a Chungcheongnam-do Province Industrial Complex Area (충청남도 산업단지 인근지역 주민의 생체시료 중 중금속 농도평가)

  • Joo, Yosub;Roh, Sangchul
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.3
    • /
    • pp.213-223
    • /
    • 2016
  • Objectives: This study was designed to assess the level of physical exposure to heavy metals among residents who live around a Chungcheongnam-do Province industrial complex and to provide baseline data on the effects and harms of heavy metals on the human body by comparing their exposure levels to those of people from control regions. Methods: We measured blood lead and cadmium levels and urine mercury and chromium levels and conducted a survey among 559 residents from the affected area and 347 residents of other areas. Results: Blood lead and cadmium levels and urine mercury levels were significantly higher in the case region than among those in the control region (p=0.013, p<0.001, p<0.001, respectively). In the thermoelectric power plant area, blood cadmium and urine mercury levels were significantly higher than in the control region (p<0.001, p<0.001, respectively). In the steel mill and petrochemical industry areas, blood cadmium level was significantly higher than that in the control region (p<0.001). Dividing groups by the reference level of blood cadmium ($2{\mu}g/L$), the odds ratios between the case and control regions were 2.56 (95% CI=1.83-3.58), 3.11 (95% CI=2.06-4.71) for the thermoelectric power plant area, 1.78 (95% CI=1.19-2.65) for the steel mill area and 4.07 (95% CI=2.40-6.89) for petrochemical industry area. Conclusion: This study showed that the levels of exposure to heavy metals among residents living near a Chungcheongnam-do Province industrial complex were significantly higher than those in the control region. This seems to be attributable to exposure to heavy metals emissions from the industrial complex. Further research and safety measures are required to protect residents' health.

A Design of Greenhouse Control Algorithm with the Multiple-Phase Processing Scheme (다중 위상 처리구조를 갖는 온실 복합환경제어 알고리즘 설계)

  • Daewook Bang
    • Journal of Service Research and Studies
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 2021
  • This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.

Measurement of Complex Odor from Industries and Regulated Odorous Substance in Public Complaint Areas of Changwon Industrial Complex, and Its Reduction Countermeasure (창원공단 주요 악취 민원 발생지역 주변 악취발생 현황조사 및 저감방안에 관한 연구)

  • Oh, Il-Hwan;Seo, Jeoung-Yoon;Kim, Tae-Hyung
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.525-535
    • /
    • 2008
  • 5 public complaint areas against odor in Changwon Industrial Complex were selected and investigated to clear up the cause of the complaint. 16 companies operated in public complaint areas were visited and had a grip of their situation about odor generation and treatment. Two samples at it's site boundary of each company were taken to measure complex odor unit. Complex odor unit at the site boundary of investigated companies in the public complaint areas, for the most part, exceeded standard(odor unit 20) in industrial area. It was due to that this area was not designated as odor control region and that there are also many problems in current laws of Odor Protection Act, Air Quality Act and regional legislation. Accordingly, It will be necessary to revise the related legislation, to organize governance, to financially support the improvement of environmental facilities and to enforce guidance and the regulation rigidly for the odor emission reduction in Changwon Industrial Complex.

Health Effects from Odor Pollution in Sihwa Industrial Complex (경기도 시화공단 지역주민의 악취오염과 관련된 건강영향 평가)

  • Cho, Soo-Hun;Kim, Sun-Mean;Kim, Young-Su;Kim, Jae-Yong;Choi, Seong-Woo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.4
    • /
    • pp.473-481
    • /
    • 1999
  • Objectives: In recent days, the problem of odor pollution in community near Sihwa Industrial complex, Kynuggi Province is becoming of significant public concern. We have investigated the health effects of the Sihwa residents from odor pollution comparing with other less polluted areas. Methods: The Ansan and Kuri Cities were selected as control areas. The parents of the elementary and middle school students in these three areas were surveyed with structured questionnaire twice, Nov 1997 and Jure 1998 each. As a exposure index, the ambient air concentrations of five major air pollutants(particulates, $O_3,\;SO_2,\;NO_2$, CO) and subjective odor perception were used. We have focused health outcomes such as the prevalence of nonspecific irritant symptoms, respiratory disease among family members and the score of qualify of life(QOL). Results: Although the mean concentrations of major air pollutants except particulates were similar or lower in Sihwa than other areas, the odor perception rate and the monthly odor perception days were significantly higher. It suggested that odor producing chemical compounds are the major source of environmental pollution problem. There were higher prevalence rates of nonspecific irritant symptoms and respiratory disease among family members in Sihwa than other control areas. The QOL score was also lower in Sihwa. The odor perception proved to be a most important factor in reporting adverse health effects and lowering the QOL score. Conclusion: The residents living near Sihwa industrial complex were suffering from more adverse health symptoms and poorer QOL status than control areas. And it may be due to environmental odor pollution from industrial complex. Therefore, further research will be needed for monitoring of the responsible chemicals emitted from industries.

  • PDF

The optimal control technology on complex environment in horticulture based on artificial intelligence (인공지능 기반 시설원예 최적 복합 환경 제어 기술)

  • Min, Jae Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.756-759
    • /
    • 2017
  • The productivity of cultivated crops in Korea is low compared to the Netherlands, which is an advanced agricultural country. In addition, modernization of facility and complex environmental control technology are needed to overcome poor growth and productivity deterioration caused by shortage of sunshine, abnormal temperature and high temperature due to abnormal climate. On the other hand, domestic facility horticulture complex environmental control is a level of machine automation that can check the internal situation of a green house with a cell phone and remotely operate a sprinkler, heat cover, curtain, ventilator, Therefore, this paper suggests the development of optimum environment control technology for facility horticulture based on the growth model and the cultivation technology knowledge base in order to realize the automation of optimal complex environment control and contribute to improvement of quality and productivity of cultivated crops.

  • PDF

A Study of Control Efficiency for Odorous Pollutants in Various Emission Control Units in the Ban-Wall Industrial Complex (공단지역의 대기배출시설을 대상으로 한 악취성분의 처리효율에 관한 연구 - 반월공단 지역을 중심으로)

  • Choi, Y.J.;Jeon, E.C.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.110-124
    • /
    • 2007
  • In this study, the control efficiency of odorous compounds was measured from diverse control process units of 14 individual companies located within the Ban-Wall industrial complex of Ansan city, Korea (January to July 2005), To quantify the control efficiency levels of major odorous compounds, we collected odor samples from both the front and rear side of 17 control process units ($N=17{\times}2=34$). If the control efficiency is compared for each of 32 compounds between different process units, wet scrubber (WS) was found to be the most effective unit in terms of the sum of pollutants showing the positive control signals. Although the WS system shows generally a good control pattern for VOC, it is not the case for most index odorous pollutants; only 3 out of 12 index compounds were found to show positive control efficiencies. The results of the study also indicated that the control efficiency differ greatly between different industrial sectors and/or control process types. In the case of leather industry, carbonyl compounds were found to exhibit the highest control efficiency with its values varying from 19 to 90%. On the other hand, in the case of metal production sector, VOC recorded the maximum control efficiency with values varying from 18 to 79%. According to this study, most air pollution control facilities operated in most companies show fairly poor control efficiencies for most malodor compounds. Hence, to obtain best control efficiency of odorous pollutant emission, acquisition of better information on source characteristics and establishment of effective control technologies are highly demanding.