• Title/Summary/Keyword: complex conductivity

Search Result 258, Processing Time 0.029 seconds

Theoretical Study of Boric Acid Determination In Nickel Plating Solution (니켈 도금액의 붕산분석에 관한 연구)

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.4 no.1
    • /
    • pp.5-15
    • /
    • 1971
  • "Rapid Determination of Boric Acid in Nickel Plating Solution" by the addition of Na$_2$C$_2$O$_4$ and thus preventing the precipitation of i(OH)$_2$ during titiration , has previously been reported. In this paper, the exact amount of glycerine and the complexing possibility of oxalate with nickel has been determined by measn of conductivity titrations. This experimental work has been supported by the mathematical application of the Debye-Huckel and mass action equitions as well as statistical analysis. The results were ; (1) Fro determining boric acid in nickel plating solution, 20 ml of 400ml/ι glycerine was sufficient, since 97% of the H$_3$BO$_3$ was dissoicated by this addition. (2) In the absence of Na$_2$C$_2$O$_4$ the continious precipitation of Ni(OH)$_2$ during titration with NaOH even past end -point for boric acid determination resulted in considerable anlaytical error. (3) In the presence of Na$_2$C$_2$O$_4$ during titration , Ni++ combined with C$_2$O$_4$-to form NiC$_2$O$_4$. The solution with this precititate of very fine, colloidal , trantsparent particles, remained quite clear for approximately 2 hours. Therefore it was shown that the presence of Na$_2$C$_2$O$_4$ prevents the formation of gross Ni(OH)$_2$ precititation by forming NiC$_2$O$_4$ instead of a complex salt with Ni++ , which did not interfere with the visible determination of the end point for boric acid with NaOH titation. This observous may be interpreted in the light of the previously published solubility ratio for NiC$_2$O$_4$ and Ni(OH)$_2$, 0.3mg/100g H$_2$O(25$^{\circ}C$), respectively. Precipitation of the less soluble , albeit transparent salt, NiC$_2$O$_4$ precluded therefore the precipitation of the Ni(OH)$_2$ salt.

  • PDF

A Study on the Boil-Off Rate Prediction of LNG Cargo Containment Filled with Insulation Powders (단열 파우더를 채용한 LNGCC의 BOR예측에 관한 연구)

  • Han, Ki-Chul;Hwang, Soon-Wook;Cho, Jin-Rae;Kim, Joon-Soo;Yoon, Jong-Won;Lim, O-Kaung;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • A BOR(Boil-Off Rate) prediction model for the NO96 membrane-type LNG insulation containment filled with superlite powders during laden voyage is presented in this paper. Finite element model for the unsteady-state heat transfer analysis is constructed by considering the air and water conditions and by employing the homogenization method to simplify the complex insulation material composition. BOR is evaluated in terms of the total amount of heat invaded into LNGCC and its variation to the major variables is investigated by the parametric heat transfer analysis. Based upon the parametric results, a BOR prediction model which is in function of the LNG tank size, the insulation layer thickness and the powder thermal conductivity is derived. Through the verification experiment, the accuracy of the derived prediction model is justified such that the maximum relative difference is less than 1% when compared with the direct numerical estimation using the FEM analysis.

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

Kinetics of the Solvolysis of 1-Adamantyl Fluoroformate under High Pressure (고압하에서 1-Adamantyl Fluoroformate의 가용매분해반응에 대한 속도론적 연구)

  • Kyong Jin Burm;Dennis N. Kevill;Kim Jong Chul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.3-9
    • /
    • 1993
  • Specific rates of solvolysis of 1-adamantyl fluoroformate in hydroxylic solvents have been measured by an electric conductivity method under various pressures. The activation parameters (${\Delta}V^{\neq}{_o},\;{\Delta}{\beta}^{\neq},\;{Delta}H^{\neq},\;{Delta}S^{\neq}$,/TEX>) and average pressure within the solvation-shell of activated complex (charge development) have been estimated from the rates. Also, the selectivities for the formation of solvolysis products in aqueous ethanol have been determined by response-calibrated GC. The values of ${\Delta}V^{\neq}{_o},\;and\;{\Delta}{\beta}^{\neq}$ are both negative, but ${Delta}H^{\neq}$ is positive and ${Delta}S^{\neq}$, is large negative. This behavior is discussed in terms of electrostriction of solvation. From these results, it could be postulated that the solvolysis of 1-adamantyl fluoroformate have two major reaction pathway.

  • PDF

Temporal Changes and Correlations Between the Chemical Characteristics of Soils in the Case of the Reclaimed Costal Area of Kyung-Gi Province, Korea (서해안 임해매립지 녹지공간 토양성분들의 상관성 및 경시적 변화특성)

  • 구본학;강재선;김정욱
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.161-169
    • /
    • 2000
  • In this study, the temporal changes in the chemical characteristics of soil in a reclaimed coastal area, the Shihwa Industrial Complex in the West Coast in Kyung-Gi Province, and the correlations between chemical components were investigated to provide useful information needed for introducing vegetation in the area. The sites were filled with mountain forest soils from 1987 to 1996, and developed into various landuses such as neighbourhood parks, children's parks, buffer greens, pedestrian roads and others. The correlation analyses shoed that pH, organic matter(OM) and available P205 had not been closely related to other chemical parameters such as various cations electro-conductivity(EC) and cation exchange capacity(CEC): especially, pH showed a very low correlation with other factors. The EC turned out to have positive relationships with cations, especially with Na+ ions. There seemed to be fairly good correlations between cations except Ca++ ion. The relation between cations and OM was inconclusive possible because the OM contents in the soils were too low for the analysis. The OM seemed to increase slowly with time and the EC decreased slowly. The salinity and CEC in the original soils decreased rapidly possibly because of leaching. It is believed that there were some external disturbances such as rainfall which had affected the soil properties. The soils sampled in dry season showed a very high salinity. From this it is possible to assume that the rainfall would affect the sol properties significantly. So it is necessary to continue further studies to investigate the impacts of external disturbances such as rainfall on vertical soil profile and temporal variations as well as to delineate correlations between parameters with external disturbances controlled.

  • PDF

A study of decomposition of sulfur oxides(harmful gas) using calcium dihydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물(유해가스)의 제거에 관한 연구)

  • Kim, Dayoung;Hwang, Myungwhan;Woo, Insung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2014
  • Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide($Ca(OH)_2$), CaO, and $TiO_2$ were used as catalysts. Harmful air polluting gases such as $SO_2$ were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide($SO_2$). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the $Ca(OH)_2$ catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas $SO_2$ with the $Ca(OH)_2$ catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas $SO_2$ by the $Ca(OH)_2$ catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.

Application of the Flowerbed Type Infiltration System for Low Impact Development - Focus on the Application to Eco-Village - (저부하형 개발을 위한 화단형 빗물침투시설 적용방안 - 생태전원마을에서의 적용을 중심으로 -)

  • Han, Young-Hae;Lee, Tae-Goo;Schuetze, T.
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Since 2000 country region developmental policy has been to integrate not only the improvement of physical living environment but also various subjects on ecology, environment, scenery, local culture, and green tourism. This study has recently established a decentralized Rainwater Management plan in order to provide an hydrology cycle system to the eco-village being planned by Seocheon-gun as a part of the garden village development business promoted by the ministry of agriculture and forestry. Hydraulic conductivity of the subject area is measured at $10^{-7}{\sim}10^{-10}m/sec$, and a flowerbed-type rainwater Infiltration system capable of controlling a non-point pollution source that stems from the development-caused impermeable surface has been applied. In the case of rainwater flowing out from the main entrance way and parking lot within the complex being treated in the flowerbed-type rainwater infiltration system, natural purification effects via soil and plants as well as natural water cycling effects through evaportranspiration and infiltration are expected. The significance of this study, compared to conventional decentralized rainwater management being applied limited to the urban areas, is that it offers appropriate rainwater management planning based on the analysis of the current situation of the subject area. Decentralized Rainwater Management is a valuable measure both economically and ecologically that reduces the burdens on local underground water cultivation as well as rain water pipe lines or purification systems, and sewage pipes.

Planarization of Cu intereonnect using ECMP process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Lee, Ho-Jun;Oh, Ji-Heon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF

Effect of the Inert Ceramic Powder on the Electrical and Mechanical Properties of the Polymer Electrolytes (비활성 세라믹 분말이 고분자 전해질의 전기적, 기계적 특성에 미치는 영향)

  • Kim, Dong-Won;Park, Jung-Ki;Kim, Chang-Jung;No, Kwang-Soo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.237-244
    • /
    • 1993
  • The characteristics of composite polymer electrolytes obtained by adding a fine ceramic powder($\gamma-{LiAlO}_{2}$) with a diameter of $1{\mu}$m to a poly(ethylene oxide)/lithium trifluoromethane sulfonate (LiC$F_3$S$O_3$) complex are described in terms of morphological and mechanical behavior. The addition of uniformly dispersed ceramic powder greatly improves the electrical and mechanical properties of solid polymer electrolytes at ambient temperature. For the composite polymer electrolytes under this study, the optimum composition of the $\gamma-{LiAIO}_{2}$ in the composite for maximum ionic conductivity was found to be 20 wt%.

  • PDF

Technology of selective absorber coatings on solar collectors using black chromium+3 sulfate acid on substrates (흑색 황산3가크롬을 이용한 태양열 흡열판 선택흡수막 도금기술)

  • Ohm, Tae-In;Yeo, Woon-Tack;Kim, Dong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • One of the most important factors that have a large influence on performance of the solar water heater system is performance of the solar collector, more detailedly, coating technology on the surface of the solar collector, which can provide high solar absorptance and low emittance. The core of the coating technology is to coat solar selective surfaces. In this study, various performance experiments are carried out using $Cr_2(SO_4)_3{\cdot}15H_2O$ coating technology. Here, IGBT(Insulated Gate Bipolar Transistor) of 5000A-15V was used as the surface processing rectifier which can stably output power and also can control voltage and current. The plating solution mainly contains black chrome$^{+3}$ concentration, H-y Conductivity, N-u Complex, NF Additive and NC-2 Wetter. Before applying the black chrome coating on the copper plate, optimal conditions are provided by using various preprocessing methods such as removal of fat, activation, electrolytic polishing, nickel strike, copper sulfate plating and bright neckel plating, and then the automatic continuous coating experiment are performed according to plating time and cathode current density. In the experiment, after the removal of fat, chemical polishing, nickel strike and activation processes as the preprocessing methods, the black chrome coating was performed in a plate solution temperature of $28^{\circ}C$ and a cathode current density of $18A/cm^2$ for 90 seconds. The thickness of chrome and nickel on the coated plate is $0.389{\mu}m$, $159{\mu}m$ respectively. As a result of the coating experiment, it showed the most excellent performance having a high solar absorptance of 98% and a low emittance of $5{\pm}1%$ when the black chrome surface had a thickness of $0.398{\mu}m$.