• Title/Summary/Keyword: complementary learning

Search Result 123, Processing Time 0.03 seconds

Evaluating the Success Factors of Microfinance : A Case Study of Grameen Bank (마이크로파이넨스 성공요인 연구 : 그라민 은행 사례)

  • Nargis, Farhana;Lee, Sang-Ho;Kwon, Kyung-Sup
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.3
    • /
    • pp.65-73
    • /
    • 2012
  • Microfinance has been an important tool for the economic growth and poverty alleviation. But the success factors and risk factors have not been synthesized in academic literature. This article has paid attention to success factors and potential risk of the Grameen Bank. Grameen Bank methodology is almost the reverse of the conventional banking methodology. Conventional banking is based on the principle that the more you have, the more you can get. Founder of Grameen Bank, Professor Yunus pointed out that, "The least you have the highest you have the priority to receive a loan". On the basis of theoretical literature, there have been different kinds of success factors of microfinance observed in this paper. Key success factors of Grameen Bank are like these: innovation, strict administrative structure, adaptation and learning practice, incentive system. Complementary services such as business consulting and brokerage will contribute to borrowers' economic performance development.

  • PDF

Study on High-speed Cyber Penetration Attack Analysis Technology based on Static Feature Base Applicable to Endpoints (Endpoint에 적용 가능한 정적 feature 기반 고속의 사이버 침투공격 분석기술 연구)

  • Hwang, Jun-ho;Hwang, Seon-bin;Kim, Su-jeong;Lee, Tae-jin
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.21-31
    • /
    • 2018
  • Cyber penetration attacks can not only damage cyber space but can attack entire infrastructure such as electricity, gas, water, and nuclear power, which can cause enormous damage to the lives of the people. Also, cyber space has already been defined as the fifth battlefield, and strategic responses are very important. Most of recent cyber attacks are caused by malicious code, and since the number is more than 1.6 million per day, automated analysis technology to cope with a large amount of malicious code is very important. However, it is difficult to deal with malicious code encryption, obfuscation and packing, and the dynamic analysis technique is not limited to the performance requirements of dynamic analysis but also to the virtual There is a limit in coping with environment avoiding technology. In this paper, we propose a machine learning based malicious code analysis technique which improve the weakness of the detection performance of existing analysis technology while maintaining the light and high-speed analysis performance applicable to commercial endpoints. The results of this study show that 99.13% accuracy, 99.26% precision and 99.09% recall analysis performance of 71,000 normal file and malicious code in commercial environment and analysis time in PC environment can be analyzed more than 5 per second, and it can be operated independently in the endpoint environment and it is considered that it works in complementary form in operation in conjunction with existing antivirus technology and static and dynamic analysis technology. It is also expected to be used as a core element of EDR technology and malware variant analysis.

Narrative Characteristics in High School Students' Geological Field Trip Reports: the Relationship Between the Narrative Mode of Thought and the Academic Achievement (지질 답사 보고서에 나타난 고등학생들의 내러티브 특성: 내러티브적 사고와 학업 성취도의 관계)

  • Chung, Sue-Im;Shin, Dong-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.4
    • /
    • pp.735-750
    • /
    • 2015
  • The purpose of this study is to draw an educational implication by analyzing the context of narrative texts, students' narrative thinking, and their academic achievement. We investigated text types in students' geological field trip reports, the reason why students favors narrative texts, the relationship between narrative texts and their scientific knowledge recall, and the relationship between narrative thought and academic achievement. All students used expository texts, 82% of them expressed argumentative texts, and 36% of them used narrative texts. It is likely that students use more narrative texts because students were in the context of outdoor activity and so, their emotional feelings were more activated than when they are doing lab activities. The academic characteristics of earth science seemed to contribute more narrative texts in students' reports. The post-test revealed that students with narrative texts recalled better than the others. On the other hand, there were no statistically meaningful differences in academic achievement between the two groups. However, we have noted that female students whose reports contain narrative texts achieved significantly higher scores than female students whose reports are without narrative texts. From in-depth interviews, we found that students who properly used both paradigmatic and narrative mode of thought were in a more advantageous position than those who used narrative thought only. It was also found that some narratively thinking students tended to feel uncomfortable with the way of learning or evaluating questions about science. In the future, a complementary approach of narrative and paradigmatic mode of thoughts would be encouraged by understanding students' tendency of thinking.

Recognition of Efficiency and Effectiveness of the Experiences with Hand Acupuncture (수지침 경험자들의 수지침에 대한 효율성과 효과성 인식정도)

  • Lee, Yeon-Joo;Park, Kyung-Min
    • Research in Community and Public Health Nursing
    • /
    • v.12 no.1
    • /
    • pp.278-287
    • /
    • 2001
  • The purpose of this study is to provide with basic information on application of hand acupuncture as a complementary and alternative therapy by giving some recognition of efficiency and effectiveness of hand acupuncture. And so, answers for questionnaires of 290 respondents were used for this research and collected from June 5 through 13, 1999 from adults twenty and over who were participating in the hand acupuncture training program in Seoul and had some direct experiences with hand acupuncture therapy, whatever they had been treated and/or had treated. To secure reliability of measurement tool. Cronbach'a has been calculated and Factor Analysis was done as Validity Analysis of question classification. Demograprucal characteristics of hand acupuncture experienced people and factors related to hand acupuncture experiences are calculated based on the real number and percentage. The degree of recognition of efficiency and effectiveness of hand acupuncture is made as average and standard deviation, while the degree of recognition of efficiency and effectiveness based on general characteristics come from one-way ANOVA. 1. According to socio-demographical analysis. the questioned could be classified firstly as age (40-49 : 32.5%. 30-39 : 24.9%. 50-59 : 21.9%. 60-69 : 14.7%. 20-29 : 6.0%). secondly gender (male 36.6%. female 63.4%). thirdly occupation (housewife: 43.8%. self-employed: 15.5%. company-employee: 14.8%). fourthly education (high school graduate: 41.9%, college graduate: 37.9%), and lastly monthly-income (1 to 2 million: 51.4%. 2 to 3 million: 20,3%) 2, As for the general aspects related to hand acupuncture. 80,0% of the respondents answered almost zero for the monthly average number of visit to hospital and 15.5% responded 1 to 2 visits, 6,2% of the respondents is complaining of a disorder of digestive system. 19,0% circulatory disease, 10.7% bad nervous system. By utilizing hand acupuncture, 84% of the questioned have following experiences in curing diseases: digestive system 47.3%, circulatory system 9.3%, nervous system 8.3%, 54,1% are curing 1 to 2 and 10.3% 3 to 4 patients on a daily basis with hand acupuncture. Research on the demerits of giving medical treatment with hand acupuncture shows 23,8% are feeling economic burden. 16.6% difficulty of learning and 16.2% weak theoretical backgrounds. 3. Among the efficiency recognition, possibility of general application is average 4,29 and simple treatment is 4,19. economic merits 4.36. possibility of establishment with supplementary and alternative medicine 4.17, medical effectiveness 4.09. 4, As a result of demographical analysis on the efficiency and effectiveness of hand acupuncture therapy, it appears that the recognition of efficiency based on occupation and the recognition of effectiveness based on monthly income are most significant to be noticed. In an orderly fashion. government-employee, self-employed, company-employee. and then housewife have perceived hand acupuncture very efficiently, And those who recognize hand acupuncture to be most effective are people earn 1 million to 2 million won a month, 5. The efficiency(p = .003) and effectiveness (p= .049) of hand acupuncture therapy by number of visit to hospital were statiscally significant, and effectiveness of hand acupuncture therapy by disease exist was statiscally significant (p= .033).

  • PDF

Analysis of Science Lesson Plan of Pre-Service Elementary Teachers about Condensation (초등 예비교사의 응결 차시에 대한 과학 수업 설계 분석)

  • Sung, SeungMin;Yeo, Sang-Ihn
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.172-186
    • /
    • 2021
  • The purpose of this study is to analyze the science lesson plan of pre-service elementary teachers about condensation. Pre-service elementary school teachers in A national university of education was included in this study. Through the analysis of prior research and expert review, a framework for analysis of science lesson plan of pre-service elementary teachers was derived. The results of the using the analysis frame are as follows: First, the ability to apply the instructional model in the science lesson plan about condensation differences in pre-service elementary teachers need to be enhanced due to deviations, and teaching on the exact understanding of condensation-related concepts of pre-service elementary teachers is also needed. Second, there is also a deviation of pre-service elementary teachers in the beginning, development, and finishing composition of lesson course, so feedback should be supplemented. Third, in the sub-domain of lesson environment, there was a demand for specific know-how on the lesson environment. Therefore, support is needed for related PCK growth. Fourth, the sub-domain of lesson evaluation have a variety of perspectives on timing and subjects, and some missing about learning objectives in the composition of evaluation content are found to require complementary teaching. In order to improve this situation, it was found that there was a need to prepare conditions for improving science teaching professionalism of pre-service elementary teachers through in-depth discussions on the teaching methods and organization related to science education in the university of education course.

Prospective Mathematics Teachers' Perceptions of the Use of Hands-On Manipulatives and Technological Tools in Teaching Quadratic Curves (이차곡선 수업에서 공학도구 사용과 수작업 교구 활동에 대한 예비 수학교사들의 인식)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.1
    • /
    • pp.151-172
    • /
    • 2021
  • In this study, I investigated prospective mathematics teachers' perceptions of activities using Wax-paper, a hands-on material (manipulatives), and GeoGebra, a technological tool, in teaching quadratic curves. Twenty prospective mathematics teachers in the Mathematics Education Department of a local university participated in a survey on their perception of the use of hands-on materials and technological tools in teaching quadratic curves. According to the results of this study, prospective mathematics teachers generally preferred the use of technological tools for learning and teaching quadratic curves. Additionally, mathematics teachers thought that the tool helped students develop intuitive thinking through visualizing quadratic curves, enabling the exploration of various mathematical properties, assisting the comprehension of various concepts, and increasing students' interest levels. However, they were concerned about the immature use of technological tools by students or teachers, and recognized that the advantages and disadvantages of using hands-on material and technological tools were complementary. Based on these findings, it is suggested that hands-on material and technological tools should be used complementally in mathematics classes, and the development and dissemination of class materials that are not affected by students' or teachers' ability to use technological tools is important.

A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model (AI모델을 적용한 군 경계체계 지능화 방안)

  • Changhee Han;Halim Ku;Pokki Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2023
  • The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.

A Study on the Educational Methods of Self-Narrative Writing for University Students (대학생 자기 서사 글쓰기의 교육 방안 연구)

  • Hyun-ju Kim;Young-ha Yang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.357-366
    • /
    • 2023
  • In the purpose of this study, the college textbooks of self-narrative writing and examples of classroom practice are analyzed to find a way to educate it. The self- narrative writing subject with a learning of recognization, expression, and communication with oneself, emphasizes the necessity when they become college students through entrance exam-oriented education. The research methods are as follows. Firstly, three university textbooks which include a section on self-narrative writing were compared and analyzed. The analysis highlights the needs for a textbook covering self-narrative writing more extensively and comprehensively as what is offered by the existing textbooks is limited in facilitating students to fully develop the ability of self-reflection, which should be dealt as a long-term goal. Secondly, the current discussion on self-narrative writing and examples of real classroom practice were analyzed. It shows that a step-by-step approach is required to encourage the practice of deep self-reflection to be incorporated into writing. In addition, during the writing process, various correction and feedback activities should be carried out on a macro level and gradually while the communication and feedback should take place not only between a teacher and students, but also among students. As a result, it is expected that this study will help establish a teaching model of self-narrative writing by seeking complementary points and educational directions for self-narrative writing.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.