포트폴리오 최적화 이론의 초석인 Markowitz의 평균-분산 포트폴리오 모형 (1952)이 발표된 이후로 많은 분야에서 포트폴리오 최적화에 대한 다양한 연구가 진행되었다. 기존의 평균-분산 포트폴리오 모형은 주로 목적함수나 제약식에 비선형 볼록 형태를 포함한다. 이를 Dantzig의 선형계획법을 적용하여 선형으로 변환시켜 알고리즘 계산 시간을 효율적으로 감소시켰다. 또한 시계열 데이터 특성을 반영하여 시간에 따른 가중치를 고려하는 가우시안 커널 가중치 공분산을 제안하였다. 여기에 일정 부분은 벤치마크에 투자하고 나머지는 포트폴리오 최적화 모형으로 제안된 자산들에 투자하는 퍼터베이션 방법을 적용하여 평균 수익률과 위험도를 목적에 맞게 조절하도록 하였다. 또한, 본 논문에서는 안정적이면서도 적은 자산을 보유하게 포트폴리오를 구성하여 관리비용(management costs)과 거래비용(transaction costs)를 낮출 수 있는 Dantzig-type 퍼터베이션 포트폴리오 모형을 제안하였다. 제안된 모형의 성능은 5개의 실제 데이터 세트로 벤치마크 포트폴리오와 비교 분석하여 평가하였다. 최종적으로 제안한 최적화 모형은 벤치마크보다 높은 기대수익률이나 낮은 위험도를 갖는 포트폴리오를 구성하여 퍼터베이션 목적을 만족하며, 투자한 자산의 수와 시간에 따른 자산 구성 변화를 일정 수준 이하로 조절하는 희소하며 안정적인 결과를 얻었다.
설계단계에서 구조적 안전성을 확인하더라도, 시공단계에서는 구조시스템이 완전히 형성되지 않아 구조적 안전성이 보장되지 않는다. 또한 시공 기간은 완공된 이후의 건물의 사용기간보다 짧기 때문에 설계단계에서와 같은 지진하중을 시공단계에 적용하는 것은 과다하다. ASCE 37-14는 시공 중 지진하중 저감계수의 개념을 제시하고 있지만, 명확한 적용 방법을 제공하지 않고 있다. 따라서, 이 연구에서는 재현주기에 따라 저감한 지진하중을 주거용 중층 RC건물의 예제 모델에 적용하였다. 예제모델의 시공단계를 5층 단위로 구분하였으며, 시공단계 모델들에 재현주기 변화에 따른 지진하중을 적용하여 시공 중 지진하중을 분석하고 구조 부재의 단면성능 검토를 수행하였다. 설계단계와 시공단계에서의 전단벽 설계강도비를 비교하여, 주거용 중층 RC 건물의 시공 중 안전성을 확보할 수 있는 지진하중 크기의 범위를 재현주기의 관점에서 분석하였다.
현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.
최근 수문 및 수자원 분야에서 위성영상의 활용성이 높아짐에 따라 관련 전용 위성 개발연구와 연계하여 위성을 활용한 증발산량과 토양수분량 산정 연구의 필요성이 강조되고 있다. 본 연구에서는 이러한 위성을 기반으로 증발산량 및 토양수분량의 국내 연구현황과 그 산정 방법론을 조사하여 현재까지의 연구동향을 파악하고자 하였다. 국내 연구현황을 세부 방법론 별로 살펴본 결과 일반적으로 증발산량의 경우는 Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC)과 같은 에너지수지 기반 모형과 Penman-Monteith (PM) 및 Priestley-Taylor (PT) 산출식을 기반으로 산정되었으며, 토양수분량의 경우 능동형(AMSR-E, AMSR2, MIRAS, SMAP) 및 수동형(ASCAT, SAR)와 같은 마이크로파 센서를 통한 산정이 주를 이루었다. 통계적 측면에서는 증발산량 및 토양수분량 공통적으로 회귀식 및 인공지능을 이용한 산출사례를 찾을 수 있었다. 또한 위성기반 자료들을 이용한 Evaporative Stress Index (ESI), Temperature-Vegetation Dryness Index (TVDI), Soil Moisture Deficit Index (SMDI) 등의 다양한 지표를 산정하여 가뭄 특성파악에 적용한 연구 사례도 다수 있었으며, 지표모형(Land Surface Model, LSM)을 기반으로 하여 위성 다중센서에서 얻을 수 있는 주요 자료들을 활용해 증발산량과 토양수분량의 수문순환인자를 산출하기도 하였다. 본 논문에서는 이렇게 기존 연구사례 조사 및 내용파악 과정을 통해 위성을 활용한 주요 세부 방법론을 비교·검토 제시함으로써 관련 연구분야 기준 참고자료로의 활용 및 향후 위성기반 관련 수문순환 자료 산출 고도화 연구의 초석을 다지고자 한다.
본 연구의 목적은 외부경제요인을 고려할 수 있는 새로운 산업용지 수요예측 방법을 제시하는 것이다. 분석모형은 외생변수를 고려할 수 있는 ARIMA-X를 이용하였다. 외생변수는 경제 및 산업구조를 반영할 수 있도록 거시경제, 제조업 경기실사지수 및 경기종합지수 변수들로 구성된다. 그리고 예측은 외생변수 중 산업용지 공급보다 선행하는 변수만을 사용한다. 산업용지 공급에 선행성을 갖는 변수는 수입액, 민간·정부소비지출, 총자본형성, 경제심리지수, 기계류내수출하지수, 경기종합선행지수로 나타났다. 이들 변수를 이용하여 ARIMA-X 모형을 추정한 결과, 수입액 변수만 포함된 ARIMA-X(1,1,0) 모형이 통계적으로 유의한 것으로 나타났다. 산업용지 수요예측은 수입액의 변화 시나리오를 반영하여 2021년부터 2030년까지의 산업용지를 예측하였다. 그 결과, 장래 산업용지 수요는 연평균 1.91% 증가한 1,030.79 km2로 예측되었다. 이 결과를 기존 지수평활법과 비교한 결과, 본 연구의 결과가 기존 모형보다 예측오차가 더 적게 나타났다. 새로운 산업용지 예측모형으로 사용가능할 것으로 기대된다.
본 연구에서는 확대머리 정착이음을 갖는 연결부의 상세에 따른 구조거동을 유한요소해석을 통해 분석하였다. 복잡한 접촉조건과 비선형 거동을 나타내는 연결부의 유한요소해석을 위하여 외연적 동해석을 활용한 준정적 해석 기법을 적용하였다. 기존 실험결과와 해석결과를 비교하여 유한요소모델의 정확성을 검토하였으며, 준정적 해석 기법은 확대머리 연결부의 비선형성을 잘 반영하는 것을 확인하였다. 다양한 정착길이, 횡방향 철근지수를 갖는 21가지 유한요소모델을 활용하여 구조해석을 수행한 결과 정착길이와 횡방향 철근지수의 증가는 강도와 연성도를 증가 시키는 것을 확인하였으나, 충분한 구조성능을 확보하기 위해서는 두 가지 설계변수 모두 일정수준을 확보해야 함을 확인하였다. 최근 개정된 확대머리 정착이음 설계기준에서는 정착길이와 횡방향 철근지수를 모두 고려하는 설계식을 제시하고 있으며, 본 연구의 결과에서도 정착길이 뿐만 아니라 횡방향 보강철근이 매우 중요한 영향을 미치는 것을 확인하였다.
무선 기술의 고도화 및 이동통신 기술의 인프라가 빠르게 성장함에 따라 AI 기반 플랫폼을 적용한 시스템이 사용자의 주목을 받고 있다. 특히 사용자의 취향이나 관심사 등을 이해하고, 선호하는 아이템을 추천해주는 시스템은 고도화된 전자상거래 맞춤형 서비스 및 스마트 홈 등에 적용되고 있다. 그러나 이러한 추천 시스템은 다양한 사용자들의 취향이나 관심사 등에 대한 선호도를 실시간으로 반영하기 어렵다는 문제가 있다. 본 연구에서는 이러한 문제를 해소하기 위해 GRU(Gated Recurrent Unit) 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템에서는 사용자의 취향이나 관심사를 실시간으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 또한 대중들의 관심사 및 해당 영화의 내용을 분석하여 사용자가 선호하는 요인과 유사한 영화를 추천하기 위해 GRU 언어 모델 기반의 모델을 적용하였다. 본 추천 시스템의 성능을 검증하기 위해 학습 모듈에서 사용된 스크래핑 데이터를 이용하여 학습 모델의 적합성을 측정하였으며, LSTM(Long Short-Term Memory) 언어 모델과 Epoch 당 학습 시간을 비교하여 학습 수행 속도를 측정하였다. 그 결과 본 연구의 학습 모델의 평균 교차 검증 지수가 94.8%로 적합하다는 것을 알 수 있었으며, 학습 수행 속도가 LSTM 언어 모델보다 우수함을 확인할 수 있었다.
본 연구에서는 고온가열 이후의 탄소 보강근의 잔류 부착 강도 평가를 위하여 상온, 150℃에 따른 부착실험을 수행하였으며, 탄소 보강근과의 비교를 위한 D10 및 D13 철근도 고온 가열한 이후 잔류 부착 강도를 평가하였다. 실험 결과, 150℃ 가열 이후 탄소 보강근의 부착 강도는 상온 대비 약 9.94% 감소하였다. 반면 가열 이후 D10 철근 및 D13 철근 모두 탄소 보강근 대비 부착 강도 감소율이 적게 나타났다. 또한 온도 가열 이후 최대부착 강도에서 발생한 슬립도 탄소 보강근과 철근 모두 줄어드는 경향을 보였다. 이를 통해 고온가열에 따른 부착 강도와 슬립 감소의 상관관계를 확인하였으며, 부착-슬립 곡선을 나타내었다. 최종적으로는 실험 결괏값을 상대부착 강도로 나타냄으로써 가열 이후 탄소 보강근 및 철근의 잔류 부착성능을 확인하고자 하였다.
콘크리트의 배합설계와 압축강도 평가는 지속가능한 구조물의 내구성을 위한 기초적인 자료로서 활용되고 있다. 하지만, 콘크리트 배합설계는 최근 배합요소의 다변화 등의 이유로 인하여 정확한 배합요소 산정이나 기준값 설정에 어려움을 겪고 있다. 본 연구에서는 인공지능 기법 중 하나인 딥러닝 기법을 사용하여 삼성분계 콘크리트의 배합요소를 산정하는 양방향 해석의 예측모델을 설계하는 것을 목적으로 한다. 콘크리트 배합요소 산정을 위한 DNN 기반 예측모 델은 층 수, 은닉 뉴런 수를 변수로 한 총 8개의 모델을 사용하여 성능평가 및 비교를 실시하였으며, 이후 학습된 DNN 모델을 사용하여 소요압축강도에 따른 콘크리트 배합 산정 결과를 출력하였다. 모델의 성능평가 결과, 콘크리트 압축 강도 인자에 대하여 평균 약 1.423%의 오류율을 나타내었으며, 삼성분계 콘크리트 배합인자 예측에 대하여 평균 8.22%의 MAPE 오차를 만족하였다. DNN 모델의 구조별 성능평가 비교 결과, 모든 배합인자에 대하여 DNN5L-2048 모델이 가장 높은 성능을 보였다. 학습된 DNN 모델을 사용하여 30, 50MPa의 소요압축강도를 가지는 삼성분계 콘크 리트 배합표 예측을 진행하였으며, 추후 학습을 위한 데이터 세트 확장과 실제 콘크리트 배합표와 DNN 모델 출력 콘 크리트 배합표 간의 비교를 통한 검증 과정이 필요할 것으로 판단된다.
본 연구는 직장 내 괴롭힘 주변인 행동을 측정하는 척도를 개발하고 타당화하는 것을 목적으로 실시되었다. 이를 위해 직장 내 괴롭힘 관련 선행연구를 참고하여 문항을 개발하고, 친가해행동, 방어행동, 방관행동으로 하위유형을 규정하였다. 전문가를 통한 내용 타당도 확인 후 총 31문항의 예비문항을 구성하였다. 지난 3년간 직장 내 괴롭힘을 직·간접적으로 목격한 민간기업 사무직 직장인 288명의 설문자료로 탐색적 요인분석을 실시하여 최종문항 26개를 선정하였으며, 이 과정에서 방어행동이 적극적 유형과 지지적 유형 두 가지 구인으로 변별됨이 확인되었다. 지난 1년간 직장 내 괴롭힘을 직·간접적으로 목격한 민간기업 사무직 직장인 518명의 자료로 확인적 요인분석을 실시하고 개발된 척도의 타당성과 신뢰성을 확인하였다. 하위유형의 재확인을 위해 경쟁모형 비교를 실시한 결과 적극적 방어행동과 지지적 방어행동이 변별됨이 재차 확인되었다. 직장 내 괴롭힘 가해행동, 조직 내 이타적 행동, 친 사회적 행동, 개입에의 공포, 도덕적 이탈, 죄책감, 도덕적 정체성의 준거변인을 설정하여 모든 하위유형의 준거 관련 타당도를 확인하였다. 본 연구의 결과로 직장 내 괴롭힘 주변인 행동과 관련된 후속 연구 과제와 직장 내 괴롭힘 예방 및 개입에 있어 주변인 행동을 활용할 방안에 대해 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.