• 제목/요약/키워드: comparative genomics

검색결과 205건 처리시간 0.032초

Brassica-Arabidopsis genome browser: Overview of Brassica genome based on comparative genomics with Arabidopsis

  • Yang, Tae-Jin;Kim, Jung-Sun;Lim, Ki-Byung;Kwon, Soo-Jin;Kim, Jin-A;Jin, Mi-Na;Park, Jee-Young;Choi, Beom-Soon;Lee, Hyo-Jin;Lim, Myung-Ho;Kim, Ho-Il;Kim, Seok-Hyoung;Lim, Yong-Pyo;Lee, Seung-Wook;Park, Tae-Suk;Hong, Jin-Han;Park, Beom-Seok
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.337-337
    • /
    • 2005
  • PDF

Brassica-Arabidopsis Genome Browser: Overview of Brassica Genome based on Comparative Genome Analysis with Arabidopsis

  • Yang, Tae-Jin;Kim, Jung-Sun;Lim, Ki-Byung;Kwon, Soo-Jin;Kim, Jin-A;Jin, Min-A;Park, Jee-Young;Choi, Beom-Soon;Lee, Hyo-Jin;Lim, Myung-Ho;Kim, Ho-Il;Kim, Seok-Hyoung;Lim, Yong-Pyo;Lee, Seung-Wook;Park, Tae-Suk;Hong, Jin-Han;Park, Beom-Seok
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 춘계학술대회 및 국제심포지움 초록집
    • /
    • pp.200-200
    • /
    • 2005
  • PDF

Comparative analysis of expressed sequence tags of Brassica rapa

  • Lim, Myung-Ho;Kim, Jin-A;Lee, Ji-Young;Park, Yang-Sun;Park, Beom-Soon;Seol, Young-Joo;Kim, Jung-Sun;Jin, Mi-Na;Lim, Ki-Byung;Yang, Tae-Jin;Kim, Ho-Il;Lim, Chae-Oh;Chung, Yong-Yoon;Hur, Yoon-Kang;Park, Beom-Seok
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.340-340
    • /
    • 2005
  • PDF

PrimateDB: Development of Primate Genome DB and Web Service

  • Woo, Taeha;Shin, Gwangsik;Kang, Taewook;Kim, Byoungchul;Seo, Jungmin;Kim, Sang Soo;Kim, Chang-Bae
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.73-76
    • /
    • 2005
  • The comparative analysis of the human and primate genomes including the chimpanzee can reveal unique types of information impossible to obtain from comparing the human genome with the genomes of other vertebrates. PrimateDB is an open depository server that provides primate genome information for the comparative genome research. The database also provides an easy access to variable information within/between the primate genomes and supports analyzed information, such as annotation and retroelements and phylogeny. The comparative analyses of more primate genomes are also being included as the long-term objective.

Isolation of Circadian-associated Genes in Brassica rapa by Comparative Genomics with Arabidopsis thaliana

  • Kim, Jin A;Yang, Tae-Jin;Kim, Jung Sun;Park, Jee Young;Kwon, Soo-Jin;Lim, Myung-Ho;Jin, Mina;Lee, Sang Choon;Lee, Soo In;Choi, Beom-Soon;Um, Sang-Hee;Kim, Ho-Il;Chun, Changhoo;Park, Beom-Seok
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.145-153
    • /
    • 2007
  • Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm. To identify and characterize these circadian response genes in Brassica crops whose genome was triplicated after divergence from Arabidopsis, we identified B. rapa BAC clones containing these genes by BLAST analysis of B. rapa BAC end sequences against the five corresponding Arabidopsis regions. Subsequent fingerprinting, Southern hybridization, and PCR allowed identification of five BAC clones, one for each of the five circadian-related genes. By draft shotgun sequencing of the BAC clones, we identified the complete gene sequences and cloned the five expressed B. rapa circadian-associated gene members, BrPRRs 1, 3, 5, 7, and 9. Phylogenetic analysis revealed that each BrPRR was orthologous to the corresponding APRR at the sequence level. Northern hybridization revealed that the five genes were transcribed at distinct points in the 24 hour period, and Southern hybridization revealed that they are present in 2, 1, 2, 2, and 1 copies, respectively in the B. rapa genome, which was triplicated and then diploidized during the last 15 million years.

Comparative Genomics Approaches to Understanding Virulence and Antimicrobial Resistance of Salmonella Typhimurium ST1539 Isolated from a Poultry Slaughterhouse in Korea

  • Kim, Eunsuk;Park, Soyeon;Cho, Seongbeom;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.962-972
    • /
    • 2019
  • Non-typhoidal Salmonella (NTS) is one of the most frequent causes of bacterial foodborne illnesses. Considering that the main reservoir of NTS is the intestinal tract of livestock, foods of animal origin are regarded as the main vehicles of Salmonella infection. In particular, poultry colonized with Salmonella Typhimurium (S. Typhimurium), a dominant serotype responsible for human infections, do not exhibit overt signs and symptoms, thereby posing a potential health risk to humans. In this study, comparative genomics approaches were applied to two S. Typhimurium strains, ST1539 and ST1120, isolated from a duck slaughterhouse and a pig farm, respectively, to characterize their virulence and antimicrobial resistance-associated genomic determinants. ST1539 containing a chromosome (4,905,039 bp; 4,403 CDSs) and a plasmid (93,876 bp; 96 CDSs) was phylogenetically distinct from other S. Typhimurium strains such as ST1120 and LT2. Compared to the ST1120 genome (previously deposited in GenBank; CP021909.1 and CP021910.1), ST1539 possesses more virulence determinants, including ST64B prophage, plasmid spv operon encoding virulence factors, genes encoding SseJ effector, Rck invasin, and biofilm-forming factors (bcf operon and pefAB). In accordance with the in silico prediction, ST1539 exhibited higher cytotoxicity against epithelial cells, better survival inside macrophage cells, and faster mice-killing activity than ST1120. However, ST1539 showed less resistance against antibiotics than ST1120, which may be attributed to the multiple resistanceassociated genes in the ST1120 chromosome. The accumulation of comparative genomics data on S. Typhimurium isolates from livestock would enrich our understanding of strategies Salmonella employs to adapt to diverse host animals.

MitGEN: Single Nucleotide Polymorphism DB Browser for Human Mitochondrial Genome

  • Park, Hyun Seok;Lee, Seung Uk
    • Genomics & Informatics
    • /
    • 제2권3호
    • /
    • pp.147-148
    • /
    • 2004
  • Recently completed mitochondrial genome databses from public resources provide us with a better understanding of individual mitochondrial genomes for population genomics. By determining the substitution rate of the genomic sequences, it is plausible to derive dates on the phylogenetic tree and build a chronology of events in the evolution of human species. MitGEN is specially designed as a mitochondrial genome browser for analyzing, comparing and visualizing single nucleotide polymorphism for human mitochondrial genomes between human races for comparative genomics. It is a standalone application and is available free for non-commercial work.

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao;Choi, Jaeyoung;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.373-382
    • /
    • 2020
  • Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.