Browse > Article

Isolation of Circadian-associated Genes in Brassica rapa by Comparative Genomics with Arabidopsis thaliana  

Kim, Jin A (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Yang, Tae-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Kim, Jung Sun (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Park, Jee Young (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Kwon, Soo-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Lim, Myung-Ho (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Jin, Mina (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Lee, Sang Choon (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Lee, Soo In (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Choi, Beom-Soon (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Um, Sang-Hee (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Kim, Ho-Il (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Chun, Changhoo (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University)
Park, Beom-Seok (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
Abstract
Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm. To identify and characterize these circadian response genes in Brassica crops whose genome was triplicated after divergence from Arabidopsis, we identified B. rapa BAC clones containing these genes by BLAST analysis of B. rapa BAC end sequences against the five corresponding Arabidopsis regions. Subsequent fingerprinting, Southern hybridization, and PCR allowed identification of five BAC clones, one for each of the five circadian-related genes. By draft shotgun sequencing of the BAC clones, we identified the complete gene sequences and cloned the five expressed B. rapa circadian-associated gene members, BrPRRs 1, 3, 5, 7, and 9. Phylogenetic analysis revealed that each BrPRR was orthologous to the corresponding APRR at the sequence level. Northern hybridization revealed that the five genes were transcribed at distinct points in the 24 hour period, and Southern hybridization revealed that they are present in 2, 1, 2, 2, and 1 copies, respectively in the B. rapa genome, which was triplicated and then diploidized during the last 15 million years.
Keywords
Brassica rapa; BAC End Sequence; Circadian-associated Genes; Comparative Genomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Cho, Y. G., Eun, M. Y., McCouch, S. R., and Chae, Y. A. (1994) The semidwarf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89, 54−59
2 Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194
3 Gebhardt, C., Walkemeier, B., Henselewski, H., Barakat, A., Delseny, M., et al. (2003) Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J. 34, 529–541
4 Hall, A. E., Fiebig, A., and Preuss, D. (2002) Beyond the Arabidopisis genome: opportunities for comparative genomics. Plant Physiol. 129, 1439−1447
5 Kim, J. S., Chung, T. Y., King, G. J., Jin, M., Yang, T.-J., et al. (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174, 29−39
6 Love, C. G., Batley, J., Lim, G., Robinson, A. J., Savage, D., et al. (2004) New computational tools for Brassica genome research. Comp. Funct. Genom. 5, 276–280
7 Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., and Koornneef, M. (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662−682   DOI   ScienceOn
8 Paterson, A. H., Bowers, J. E., Burow, M. D., Draye, X., Elsik, C. G., et al. (2000). Comparative genomics of plant chromosomes. Plant Cell 12, 1523–1540
9 Somers, D. E., Webb, A. A. R., Pearson, M., and Kay, S. A. (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494
10 Yang, T.-J., Kim, J.-S., Lim, K.-B., Kwon, S.-J., Kim, J.-A., et al. (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp. Funct. Genom. 6, 138−146
11 Makino, S., Kiba, T., Imamura, A., Hanaki, N., Nakamura, A., et al. (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791−803
12 Bancroft, I. (2001) Duplicate and diverge: the evolution of plant genome microstructure. Trends Genet. 17, 89−93
13 Zhu, H., Kim, D.-J., Baek, J.-M., Choi, H.-K., Ellis, L. C., et al. (2003). Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol. 131, 1018–1026
14 Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815
15 Rana, D., van den Boogaart, T., O'Neill, C. M., Hynes, L., Bent, E., et al. (2004). Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733
16 Schmidt, R., Acarkan, A., and Boivin, K. (2001) Comparative structural genomics in the Brassicaceae family. Plant Phys. Biochem. 39, 253–262
17 Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195– 202
18 Marra, M. A., Kucaba, T. A., Dietrich, N. L., Green, E. D., Brownstein, B., et al. (1997) High throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072−1084
19 Bowers, J. E., Chapman, B. A., Rong, J., and Paterson, A. H. (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433−438   DOI
20 Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185
21 Green, R. M. and Tobin, E. M. (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA 96, 4176–4179
22 Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150−163
23 Yang, Y.-W., Lai, K.-N., Tai, P.-Y., and Li, W.-H. (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J. Mol. Evol. 48, 597–604
24 Acarkan, A., Rossberg, M., Koch, M., and Schmidt, R. (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J. 23, 55–62
25 Blanc, G. and Wolfe, K. H. (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691
26 Lysak, M. A., Koch, M. A., Pecinka, A., and Schubert, I. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516−525
27 Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol. 41, 1002−1012
28 Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., et al. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229
29 O'Neill, C. M. and Bancroft, I. (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233−243
30 Kim, H. R., Yang, T. J., Kudna, D. A., and Wing, R. A. (2004) Construction and application of genomic DNA libraries; in Handbook of Plant Biotechnology, Christou, P. and Klee, H. (eds.), Vol. 1, pp. 71−80, Wiley, Chichester
31 Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., et al. (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2, 629–641
32 Murakami, M., Ashikari, M., Miura, K., Yamashino, T., and Mizuno, T. (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol. 44, 1229−1236
33 Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T. (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci. Biotechnol. Biochem. 69, 410−414
34 Mizuno, T. and Nakamichi, N. (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol. 46, 677−685
35 Mizuno, T. (1998) His-Asp phosphotransfer signal transduction. J. Biochem. (Tokyo) 123, 555−563
36 Meinke, D. and Koornneef, M. (1997) Community standards for Arabidopsis genetics. Plant J. 12, 247−253
37 Paterson, A. H., Lan, T.-H., Amasino, R., Osborn, T. C., and Quiros, C. (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol. 2, REVIEWS1011
38 Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6−13
39 Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., et al. (2000) PipMaker - a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586
40 Yang, T.-J., Yu, Y., Frisch, D. A., Lee, S., Kim, H.-R., et al. (2004) Construction of various copy number plasmid vectors and their utility for genome sequencing. Genomics Inform. 2, 174–179
41 Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Habor, N.Y
42 Town, C. D., Cheung, F., Maiti, R., Crabtree, J., Haas, B. J., et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359
43 Yang T.-J., Kim, J. S., Kwon, S.-J., Lim, K.-B., Choi, B.-S., et al. (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347
44 Ku, H.-M., Vision, T., Liu, J., and Tanksley, S. D. (2000). Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126
45 Lim, K.-B., de Jong, H., Yang, T.-J., Park, J.-Y., Kwon, S.-J., et al. (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cells 19, 436− 444
46 Kowalski, S. D., Lan, T.-H., Feldmann, K. A., and Paterson A. H. (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138, 499–510
47 Lukens, L., Zou, F., Lydiate, D., Parkin, I., and Osborn, T. (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164, 359–372
48 Grant, D., Cregan, P., and Shoemaker, R. C. (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 4168–4173
49 Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., et al. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883