• Title/Summary/Keyword: compaction production

Search Result 57, Processing Time 0.029 seconds

Effect of the Oversowing and Other Seeding Methods on Growth , Yield and Crude Protein Yield of Alfalfa ( Medicago sativa L. ) (겉뿌림 및 다른 파종방법들이 Alfalfa의 생육과 수량 및 조단백질생산량에 미치는 영향)

  • Lee, Joung-Kyong;Seo, Sung;Kim, Ha-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.2
    • /
    • pp.84-89
    • /
    • 1991
  • This experiment was carried out to determine the effects of oversowing and other seeding methods (oversowing+ raking, oversowing+ raking+compaction, tillage+ broadcasting+ compaction and tillage + drilling+ compaction) on growth, dry matter and crude protein yield of alfalfa (Medicago satiua L.). The results obtained are summarized as follows:1. Soil pH and soil properties were improved by tillage.2. Establishment of alfalfa was increased with raking and compaction, and more by tillage than by oversowing(P

  • PDF

LIMK1/2 are required for actin filament and cell junction assembly in porcine embryos developing in vitro

  • Kwon, Jeongwoo;Seong, Min-Jung;Piao, Xuanjing;Jo, Yu-Jin;Kim, Nam-Hyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1579-1589
    • /
    • 2020
  • Objective: This study was conducted to investigate the roles of LIM kinases (LIMK1 and LIMK2) during porcine early embryo development. We checked the mRNA expression patterns and localization of LIMK1/2 to evaluate their characterization. We further explored the function of LIMK1/2 in developmental competence and their relationship between actin assembly and cell junction integrity, specifically during the first cleavage and compaction. Methods: Pig ovaries were transferred from a local slaughterhouse within 1 h and cumulus oocyte complexes (COCs) were collected. COCs were matured in in vitro maturation medium in a CO2 incubator. Metaphase II oocytes were activated using an Electro Cell Manipulator 2001 and microinjected to insert LIMK1/2 dsRNA into the cytoplasm. To confirm the roles of LIMK1/2 during compaction and subsequent blastocyst formation, we employed a LIMK inhibitor (LIMKi3). Results: LIMK1/2 was localized in cytoplasm in embryos and co-localized with actin in cell-to-cell boundaries after the morula stage. LIMK1/2 knockdown using LIMK1/2 dsRNA significantly decreased the cleavage rate, compared to the control group. Protein levels of E-cadherin and β-catenin, present in adherens junctions, were reduced at the cell-to-cell boundaries in the LIMK1/2 knockdown embryos. Embryos treated with LIMKi3 at the morula stage failed to undergo compaction and could not develop into blastocysts. Actin intensity at the cortical region was considerably reduced in LIMKi3-treated embryos. LIMKi3-induced decrease in cortical actin levels was attributed to the disruption of adherens junction and tight junction assembly. Phosphorylation of cofilin was also reduced in LIMKi3-treated embryos. Conclusion: The above results suggest that LIMK1/2 is crucial for cleavage and compaction through regulation of actin organization and cell junction assembly.

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil

  • Ramesh, H.N.;Kulkarni, Madhavi Gopal Rao;Raghunandan, Mavinakere Eshwaraiah;Nethravathi, S.
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • Lime stabilization has conventionally been listed amid the key techniques of chemical stabilization. Replacing lime with sustainable agro-based by-products have gained prominence in recent decades. Bagasse ash (BA) is one such potential alternatives, an industrial waste with abundance in production, and industries exploring sustainable solutions for its safe disposal. Supplementing BA with lime could be an ideal approach to reduce lime consumption. However, suitability of BA and lime for the stabilization of expansive clays, such as black cotton (BC) soil is yet to be explored. This paper therefore aims to investigate the suitability of BA-lime mixtures to stabilize BC soil with emphasis to compaction behaviors and unconfined compressive strength (UCS) using standard laboratory procedures. Suitability of BA-lime mixture is then assessed against addition of calcium sulphate which, from previous experience, is detrimental with lime stabilization. Experimental outcomes nominate 15% BA as the optimum value observed from both compaction and UCS data, while addition of 4% lime to 15% BA showed the best results. Mineralogical and microstructural analysis show the presence of cementitious compounds with addition of lime and calcium sulphate with curing periods. While, formation of Ettringite needles were noted with the addition of calcium sulphate in BA-lime mixtures (at optimum values) after 90-day curing, and UCS results showed a decrease at this point. To this end, addition of BA in lime stabilization showed encouraging results as assessed from the compaction and UCS results. Nonetheless usage of calcium salts, with utmost emphasis on calcium sulphate and equivalent should be avoided.

Pellet Fuel from Wood Biomass (목질바이오매스를 이용한 펠릿연료의 제조)

  • Han, Gyu-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.521-524
    • /
    • 2006
  • Recently, densified pollet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of several species of wood to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess pellet fuels Hot-press process was adopted for compact ion of sawdust and compaction was performed under prescribed condition. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over $1.2g/cm^3$ and below 0.5%, respectively. When the press-temperature is over $60^{\circ}C$ densified fuels with density over $1.2g/cm^3$ and with fines below 0.5% can be produced. And the pressure over $1000kgf/cm^2$ was effect ive for this production.

  • PDF

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF

Effects of Soil Surface Compaction on Emergence and Growth of Directed Seeded Ginseng in Paddy Field (인삼의 논 재배시 파종 후 진압처리가 출아율과 생육에 미치는 영향)

  • Bong-Jae Seong;Moo-Geun Jee;Sun-Ick Kim;Jin-Woong Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.362-366
    • /
    • 2022
  • This study was conducted to find out the changes in the growth and yield of ginseng and the changes in the soil of direct-seeded ginseng fields after applying different compaction strengths. As a result of surface soil compactions, the topsoil hardness increases as the strength of treatment increases in the first year but topsoil hardness increased only by applying 30 kg weight of compaction in the second year. The germination rate was significantly higher (79.4% and 79.1% at 25 kg and 30 kg, respectively) in 1st year after the application of soil surface compactions. The longest plant was 35.7 cm in 4- years old ginseng in the control and the height was 26.9 cm and 26.5 cm in the soil surface compactions of 25 kg and 30 kg, respectively. In addition, the higher weight of ginseng roots of 31.3 g and 30.3 g were observed after applying 25 kg and 30 kg compaction treatment, and the lowest root weight of 25.6 g was in the control. Therefore, it is shown that after sowing, applying the weight of 25 kg to 30 kg for soil surface compaction is appropriate for better yield in direct seeded cultivation of ginseng at paddy fields.

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

The New Generation of Hydraulic Presses-Progress in the Forming Process

  • Prommer, Eric
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1276-1277
    • /
    • 2006
  • The ever increasing requirements on today's compacts with regard to their geometry and precision call for flexible high-precision and most capable production systems. DORST Technologies has coped with these requirements by developing the new HP series for pressing forces between 1600 kN and 16000 kN and the new HS series for pressing forces between 150 kN and 1200 kN. These fully hydraulic presses featuring upper ram, lower ram, core rod, filler, up to 4 lower tool levels and up to 4 upper tool levels with closed-loop controlled movements. Thanks to latest servo technology and an electronic bus system it is possible to have all movements closed-loop controlled in the desired relation to each other. Thus, today's hydraulic presses provide high stroke rates, low energy consumption and a user-friendly interface. The input of data is carried out via clearly arranged screen masks on a touch-screen. The innovative DORST $IPG^{(R)}$ (Intelligent Program Generator) has been designed to support the set-up staff in preparing and optimizing the toolprogram. The combination of the machine type with the hydraulic unit determines the productivity in consideration of the specific application and the part to be pressed. Thanks to the closed-loop control circuits, DORST hydraulic automatic presses of the latest generation ensure unmatched precision and repeatability - and consequently process reliability - often without necessitating subsequent machining steps.

  • PDF

Effect of Soil Compaction Levels and Textures on Soybean (Glycine max L.) Root Elongation and Yield (토양 경반층 강도가 콩 뿌리신장 및 생육에 미치는 영향)

  • Jung, Ki-Yuol;Yun, Eul-Yoo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.332-338
    • /
    • 2012
  • Soil compaction is one of the major problems facing modern agriculture. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. This study was carried out evaluate of the effects soil texture and different compaction levels within the soil profile on the soybean root growth and productivity. The soybean plants were grown in $21cm{\o}{\times}30cm$ cylinder pots using three different soil textures (clay, fine loamy and coarse loamy) compacted at different compaction levels (1.25, 1.50, 1.75, and 2.00 MPa). Results revealed that soybean development is more sensitive on penetration resistance, irrespective of soil type. Soybean yield and root weight density significantly decreases with increasing levels of soil compaction in both clayey and fine loamy soils, but not in coarse loamy soil. The highest root weight density was recorded in coarse loamy soils, followed by fine loamy and clay soils, in descending order. The root growth by soil compaction levels started to decline from 1.16, 1.28 and 1.60 MPa for clay, fine loamy and coarse loamy soils. Soybean production in the field experiment decreased about 30% at compacted sub-soils compared to undisturbed soils.