Browse > Article
http://dx.doi.org/10.12989/gae.2022.28.3.255

Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil  

Ramesh, H.N. (Faculty of Engineering - Civil, University Visvesvaraya College of Engineering)
Kulkarni, Madhavi Gopal Rao (Department of Civil Engineering, Presidency University)
Raghunandan, Mavinakere Eshwaraiah (Civil Engineering Discipline, School of Engineering, Monash University Malaysia)
Nethravathi, S. (Department of Civil Engineering, R.V. College of Engineering)
Publication Information
Geomechanics and Engineering / v.28, no.3, 2022 , pp. 255-263 More about this Journal
Abstract
Lime stabilization has conventionally been listed amid the key techniques of chemical stabilization. Replacing lime with sustainable agro-based by-products have gained prominence in recent decades. Bagasse ash (BA) is one such potential alternatives, an industrial waste with abundance in production, and industries exploring sustainable solutions for its safe disposal. Supplementing BA with lime could be an ideal approach to reduce lime consumption. However, suitability of BA and lime for the stabilization of expansive clays, such as black cotton (BC) soil is yet to be explored. This paper therefore aims to investigate the suitability of BA-lime mixtures to stabilize BC soil with emphasis to compaction behaviors and unconfined compressive strength (UCS) using standard laboratory procedures. Suitability of BA-lime mixture is then assessed against addition of calcium sulphate which, from previous experience, is detrimental with lime stabilization. Experimental outcomes nominate 15% BA as the optimum value observed from both compaction and UCS data, while addition of 4% lime to 15% BA showed the best results. Mineralogical and microstructural analysis show the presence of cementitious compounds with addition of lime and calcium sulphate with curing periods. While, formation of Ettringite needles were noted with the addition of calcium sulphate in BA-lime mixtures (at optimum values) after 90-day curing, and UCS results showed a decrease at this point. To this end, addition of BA in lime stabilization showed encouraging results as assessed from the compaction and UCS results. Nonetheless usage of calcium salts, with utmost emphasis on calcium sulphate and equivalent should be avoided.
Keywords
calcium sulphate; compaction behavior; expansive clay; unconfined compressive strength;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Little, D.N., Nair, S. and Herbert, B. (2010), "Addressing sulfate-induced heave in lime treated soils", J. Geotech. Geoenviron. Eng., 136(1), 110-118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000185.   DOI
2 Mitchell, J. and Dermatas, D. (1992), "Clay soil heave caused by lime-sulfate reactions", Innov. Uses Lime ASTM STP 1135 ASTM Intl., 41-64. https://doi.org/10.1520/STP15529S.   DOI
3 Villar-Cocina, E., Rojas, M.F. and Morales, E.V. (2008), "Sugar cane wastes as pozzolanic materials: Application of mathematical model", ACI Mater. J., 105(3), 258-264. http://hdl.handle.net/10261/30458.
4 Wild, S., Abdi, M.R. and Leng-Ward, G. (1993), "Sulphate expansion of lime-stabilized kaolinite: II. Reaction products and expansion" Clay Miner., 28(4), 569-583. https://doi.org/10.1180/claymin.1993.028.4.07.   DOI
5 Consoli, N.C., Domingos, P., Prietto, M., Carraro, A.H.J. and Heineck, K.S. (2001), "Behavior of compacted soil-fly ashcarbide lime mixtures", J. Geotech. Geoenv. Eng., 127(9), 774-782. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(774).   DOI
6 Dash, S.K. and Hussain, M. (2012), "Lime stabilization of soils: reappraisal", J. Mat. Civil Eng., 24(6), 707-714. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431.   DOI
7 Karatai, T.R., Kaluli, J.W., Kabubo, C. and Thiong'o, G. (2017), "Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction", J. Constr. Eng. Manage., 143(5), 04016127. http://doi.org/10.1061/(ASCE)CO.1943-7862.0001235.   DOI
8 Eberemu, A.O. (2013), "Evaluation of bagasse ash treated lateritic soil as a potential barrier material in waste containment application", Acta Geotechnica, 8(4), 407-421. https://doi.org/10.1007/s11440-012-0204-5.   DOI
9 Latifi, N., Meehan, C.L., Abd Majid, M.Z. and Horpibulsuk, S. (2016), "Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study" Appl. Clay Sci., 132-133, 182-193. https://doi.org/10.1016/j.clay.2016.06.004.   DOI
10 Sharma, R.S., Phanikumar, B.R. and Rao, B.V. (2008), "engineering behavior of a remolded expansive clay blended with lime, calcium chloride, and rice-husk ash", J. Mat. Civil Eng., 20(8), 509-515. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:8(509)   DOI
11 Sivapullaiah, P.V., Sridharan, A. and Ramesh, H.N. (2000), "Strength behavior of lime-treated soils in the presence of sulphate", Can. Geotech. J., 37(6), 1358-1367. https://doi.org/10.1139/t00-052.   DOI
12 Brito, A., Caldeira, L.M.M.S. and Maranha, J.R. (2018), "Hydromechanical characterization of soil-rockfill mixtures", J. Mater. Civil Eng., 30(7), 04018123. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002295   DOI
13 Modani, P.O. and Vyawahare, M.R. (2013), "Utilization of bagasse ash as a partial replacement of fine aggregate in concrete", Procedia Eng., 51, 25-29. https://doi.org/10.1016/j.proeng.2013.01.007.   DOI
14 Dang, L.C., Fatahi, B. and Khabbaz, H. (2016), "Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres", Procedia Eng., 143, 658-665. https://doi.org/10.1016/j.proeng.2016.06.093.   DOI
15 Cordeiro, G.C., Filho, R.D.T., Tavares, L.M. and Fairbairn, E.M.R. (2009), "Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete", Cement Concrete Res., 39(2), 110-115. https://doi.org/10.1016/j.cemconres.2008.11.005.   DOI
16 Day, R.W. (1994). "Swell-shrink behavior of compacted clay", J. Geotech. Eng., 120(3), 618-623. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(618).   DOI
17 Hausmann, M.R. (1990), Engineering Principles of Ground Modification. McGraw-Hill College (December 1, 1989).
18 Hunter, D. (1988). Lime-induced heave in sulfate-bearing clay soils. J. Geotech. Eng., 114(2), 150-167. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(150).   DOI
19 Little, D.N. and Nair, S. (2009), Recommended Practice for Stabilization of Subgrade Soils and Base Materials, National Cooperative Highway Research Program, National Academies of Sciences, Engineering, and Medicine. 2009. National Academies Press, Washington DC. https://doi.org/10.17226/22999.   DOI
20 McCarthy, M.J., Csetenyi, L.J., Sachdeva, A. and Dhir, R.K. (2012), "Identifying the role of fly ash properties for minimizing sulfate-heave in lime-stabilized soils", Fuel, 92(1), 27-36. https://doi.org/10.1016/j.fuel.2011.07.009.   DOI
21 Ojuri, O.O., Adavi, A.A. and Oluwatuyi, O.E. (2017), "Geotechnical and environmental evaluation of lime-cement stabilized soil-mine tailing mixtures for highway construction", Trans. Geotech., 10, 1-12. https://doi.org/10.1016/j.trgeo.2016.10.001.   DOI
22 Dif, A.E. and Bluemel, W.F. (1991), "Expansive soils under cyclic drying and wetting", Geotech. Test. J., 14(1), 96-102. https://doi.org/10.1520/GTJ10196J.   DOI
23 Oza, J.B. and Gundaliya, P.J. (2013), "Study of black cotton soil characteristics with cement waste dust and lime", Procedia Eng., 51, 110-118. https://doi.org/10.1016/j.proeng.2013.01.017.   DOI
24 Manoj Krishna, K.V. and Ramesh, H.N. (2012), "Strength and FOS performance of black cotton soil treated with calcium chloride", IOSR J. Mech. Civ. Eng., 2(6), 21-25. https://doi.org/10.9790/1684-0262125.   DOI
25 Mohanty, S.K., Pradhan, P.K. and Mohanty, C.R. (2017), "Stabilization of expansive soil using industrial wastes", Geomech. Eng., 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111.   DOI
26 Ramesh, H.N. and Kulkarni, M.G.R. (2018), "Effect of calcium salts on the index properties of expansive and non expansive soils in the presence of bagasse ash and lime", IOSR J. Mech. Civ. Eng., 15(4), 89-95. https://doi.org/10.9790/1684-1504038995.   DOI
27 Sivapullaiah, P.V., Sridharan, A. and Ramesh, H.N. (2006), "Effect of sulphate on the shear strength of lime-treated kaolinitic soil", Gr. Improv., 10(1), 23-30. https://doi.org/10.1680/grim.2006.10.1.23.   DOI
28 Sridharan, A. and Sivapullaiah, P.V. (2005), "Mini compaction test apparatus for fine grained soils", Geotech. Test. J., 28(3), 240-246. https://doi.org/10.1520/GTJ12542.   DOI
29 Sriraam, A.S., Raghunandan, M.E., Beng Ti, T. and Kodikara, J. (2019), "Effect of palm oil on the basic geotechnical properties of kaolin", Geomech. Eng., 18(2), 179-188. https://doi.org/10.12989/gae.2019.18.2.179.   DOI
30 Subramanian, S., Arumairaj, P.D. and Subramani, T. (2017), "Experimental and modelling study of clay stabilized with bottom ash-eco sand slurry pile", Geomech. Eng., 12(3), 523-539. https://doi.org/10.12989/gae.2017.12.3.523.   DOI
31 Sivapullaiah, P.V. and Jha, A.K. (2014), "Gypsum induced strength behavior of fly ash-lime stabilized expansive soil", Geotech. Geol. Eng., 32(5), 1261-1273. https://doi.org/10.1007/s10706-014-9799-7.   DOI
32 Sivapullaiah, P.V., Sridharan, A. and Bhaskar Raju, K.V. (2000), "Role of amount and type of clay in the lime stabilization of soils", Proc. Inst. Civ. Eng. - Gr. Improv., 4(1), 37-45. https://doi.org/10.1680/grim.2000.4.1.37.   DOI
33 Xu, M., Song, E. and Cao, G. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2), 169-178. https://doi.org/10.12989/gae.2009.1.2.169.   DOI