• Title/Summary/Keyword: compaction pile

Search Result 185, Processing Time 0.027 seconds

A Study on the Effect of Promoting Consolidation by Recycled-Aggregate Porous Concrete Pile (순환골재 다공질 콘크리트말뚝에 의한 압밀촉진효과에 관한 고찰)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.35-40
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests was carried out to evaluate promoting consolidation of a porous concrete pile fabricated with recycled aggregates (RAPP) method for soft ground improvement. Performing the laboratory chamber tests for the RAPP, characteristics of the surface settlement with time and the consolidation time were compared with those of SCP and GCP provided by You (2009) under the same experimental condition. In addition, the experimental results were compared with the numerical analysis in this study. As a test result, the effects for settlement reduction in both the primary and the secondary consolidation and promoting consolidation by RAPP were prominent comparatively.

  • PDF

A Investigation of Pull-out Characteristics for Screw Pile (스크류파일의 인발특성 연구)

  • Yoo, Chung-Sik;Shin, Boo-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.88-95
    • /
    • 2010
  • Screw piles(Helical piles and anchors) are increasingly used to support and rehabilitate reinforced structures subjected to both tensile and compressive axial loads. This study presents a variety of detailed investigation on especially pull-out characteristics of screw piles performed to both reduced scale and numerical analysis to identify fundamental failure mechanisms and empirical optimized geometry of screw piles. It was found that the pull-out characteristics of screw piles are influenced with mainly different frequencies of compaction around soil and screw pile's pitch and followings are practical data based on empirical analysis.

  • PDF

Behavior of Soft Ground Reinforced by Vibro Crushed-Stone Compacted Pile In Railroad Site (배후철도부지 진동쇄석다짐말뚝(VCCP) 개량지반의 거동)

  • Park, O-Sung;Shim, Seong-Hyen;Han, Sang-Jae;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1376-1379
    • /
    • 2006
  • Vibro crushed-stone compacted pile (VCCP) method is one of a ground improvement technique by a vibro compaction in vertical direction with crushed stone to build up stone pile foundation in other to ensure stability of soft ground. In spite of its long applied history in geotechnical engineering division, most of studies have not been based on the reliable In-situ condition but on the laboratory tests including model tests. These model tests can express standard and ideal behavior but exceptional status that can be occur in the ground cannot be considered efficiently. This study performed the the series of trial construction to investigate the effect of VCCP method on the improvement of soft ground expecially in railroad construction site.

  • PDF

Centrifuge Modeling on Displacement Shapes of Composite Ground Improved by SCP and GCP (SCP 및 GCP로 개량된 복합지반의 변위 양상에 관한 원심모델링)

  • Heo, Yol;Zheng, Zhaodian;Lee, Cheokeun;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2006
  • In this study, the centrifuge model tests were carried out to evaluate the stress concentration ratio, the deformation modes of piles and the ground movement in clay deposit improved by SCP and GCP piles with changing the replacement ratio(20%, 40%, 60%) under flexible loading. Based on the results obtained, it was shown that the stresses acting on GCP was larger than those acting on SCP with the same replacement ratio. It was evaluated that the average stress concentration ratio of soft clay ground improved by GCP was slightly larger than that of SCP when the replacement ratio is 40%. Only expansion failure occurred in GCP, whereas SCP showed the expansion and shear failure simultaneously.

  • PDF

Study on Stress Sharing Mechanism Composition Ground Improved by SCP with Low Replacement Area Ratio (저치환율 SCP에 의한 복합지반의 응력분담 메커니즘에 관한 연구)

  • You, Seung-Kyong;Matsui, Tamotsu;Hong, Won-Pyo;Yoon, Gil-Lim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.197-202
    • /
    • 2004
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

  • PDF

Permeability and Shear Strength Characteristics of Oyster Shell-Sand Mixture for Application to SCP (모래다짐말뚝(SCP) 적용을 위한 굴패각.모래 혼합토의 투수 및 전단 강도 특성)

  • Yoon, Hyun-Suk;Lee, Ki-Ho;Park, Jun-Boum;Lee, Hyung-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.863-868
    • /
    • 2004
  • The use of oyster shells is proposed as a substitute construction material for geotechnical applications. To investigate recycling possibility as a substitute of sand compaction pile (SCP) for oyster shells, the geotechnical characteristics including permeability and shear strength of crushed oyster shell, sand and crushed oyster shell-sand mixted soil. Experimental results show that the crushed oyster shells are lighter than sand in weight, and have similar characteristics on permeability to sand. The results of direct shear test show that the measured value of friction angle ${\Phi}$ of crushed oyster shell was lager than that of sand. It would be expected that more angular particles (crushed oyster shells) would interlock more thoroughly than rounded particles (send).

  • PDF

Development of New Settlement Model for Prediction of Settlement Characteristics of SCP Composite Ground (SCP 복합지반 침하거동예측을 위한 새로운 침하모델의 개발)

  • You, Sang-Ho;Park, Hyun-Il;Im, Jong-Chul;Park, Lee-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.23-32
    • /
    • 2009
  • In this study, the reliable and simple analysis method was proposed to predict the settlement characteristic of composite ground in stage of design and construction of sand compaction pile (SCP). Model parameters could be obtained by the optimization process based on genetic algorithm. In order to examine the proposed method, laboratory consolidation tests on the settlement characteristic of SCP composite ground were performed for various replacement ratio of sand such as 0 (no replacement), 20, 36, and 56%. The proposed model showed very good agreements with measured data in the relation of void ratio-log scaled stress and time-compression far each replacement ratio.

Case Study on Upheaval Characteristics of Marine Soft Ground Improved by Granular Compaction Piles (쇄석다짐말뚝으로 보강된 해상 연약지반의 융기특성 사례분석)

  • Yea, Geu Guwen;Choi, Yong Kyu;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.137-145
    • /
    • 2011
  • The amount of material upheaved owing to the installation of a granular compaction pile (GCP) in the seabed was analyzed by a field execution. The amount of material upheaved was predicted by existing equations, proposed by the Korea Construction New-Technology Association (KCNET; 2003) and Shiomi and Kawamoto (1986), and compared with the amount measured by bathymetry in the field. As a result, the upheaval heights were found to show a clear increase with increasing replacement ratio. The measured amount was larger than the amount predicted by the equations, but the amount predicted from the equation proposed by KCNET (2003) was relatively close to the measured amount. The upheaval heights were found to be more sensitive to the replacement ratio than the installation depth. The increasing trends of the upheaval heights with the installation depth as predicted by the equation of KCNET (2003) were in agreement with the measured trends at a replacement ratio of 25%. As a result of comparing the coefficients of upheaval by the equations, the coefficients of upheaval determined by the equation of KCNET (2003) were larger than those determined by the equation proposed by Shiomi and Kawamoto (1986), which were relatively close to the measured trends. Specifically, the difference between results obtained by both these equations was large when the replacement ratio was relatively low.

Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground (GCP 복합지반의 거동분석을 위한 유한요소해석)

  • Kim, Gyeong-eop;Park, Kyung-Ho;Kim, Ho-Yeon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.19-32
    • /
    • 2018
  • Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.