• 제목/요약/키워드: compact mapping

검색결과 79건 처리시간 0.028초

FIXED POINT THEOREMS FOR GENERALIZED NONEXPANSIVE SET-VALUED MAPPINGS IN CONE METRIC SPACES

  • Kim, Seung-Hyun;Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • 제27권5호
    • /
    • pp.557-564
    • /
    • 2011
  • In 2007, Huang and Zhang [1] introduced a cone metric space with a cone metric generalizing the usual metric space by replacing the real numbers with Banach space ordered by the cone. They considered some fixed point theorems for contractive mappings in cone metric spaces. Since then, the fixed point theory for mappings in cone metric spaces has become a subject of interest in [1-6] and references therein. In this paper, we consider some fixed point theorems for generalized nonexpansive setvalued mappings under suitable conditions in sequentially compact cone metric spaces and complete cone metric spaces.

Single Image Super Resolution Reconstruction Based on Recursive Residual Convolutional Neural Network

  • Cao, Shuyi;Wee, Seungwoo;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.98-101
    • /
    • 2019
  • At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the proposed method improved image qualities that occur in previous methods.

  • PDF

정확한 기생 성분을 고려한 ITRS roadmap 기반 FinFET 공정 노드별 회로 성능 예측 (Circuit Performance Prediction of Scaled FinFET Following ITRS Roadmap based on Accurate Parasitic Compact Model)

  • 최경근;권기원;김소영
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.33-46
    • /
    • 2015
  • 본 논문에서는 ITRS(International Technology Roadmap for Semiconductors)를 따라 스케일 다운된 FinFET 소자의 디지털 및 아날로그 회로의 성능을 예측했다. 회로 성능의 정확한 예측을 위해 기생 커패시턴스와 기생 저항 모델을 개발해 3D Technology CAD 해석 결과와 비교해 오차를 2 % 미만으로 달성했다. 기생 커패시턴스 모델은 conformal mapping 방식을 기반으로 모델링 되었으며, 기생 저항 모델은 BSIM-CMG에 내장된 기생 저항 모델을 핀 확장 영역 구조 변수($L_{ext}$) 변화에 따른 기생 저항 성분 변화를 반영 할 수 있도록 개선했다. 또한, 공정 단위 변화에 대해 소자의 전압전류의 DC 특성을 반영하기 위해 BSIM-CMG 모델의 DC 피팅을 진행하는 알고리즘을 개발했다. BSIM-CMG에 내장된 기생 모델을 본 연구에서 개발한 저항과 커패시턴스 모델로 대체해 압축 모델 내부에 구현하여, SPICE 시뮬레이션을 통해 스케일 다운된 FinFET 소자의 $f_T$, $f_{MAX}$, 그리고 링 오실레이터와 공통 소스 증폭기의 기생 성분으로 인한 특성변화를 분석했다. 정확한 기생 성분 모델을 적용해 5 nm FinFET 소자까지 회로 특성을 정량적으로 제시했다. 공정 단위가 감소함에 따라 소자의 DC 특성이 개선될 뿐만 아니라 기생 성분의 영향이 감소하여, 회로 특성이 향상됨을 예측했다.

CRISM 초분광 영상과 표적 탐지 알고리즘을 이용한 Spirit 로버 탐사 지역: Gusev Crater의 광물 분포 조사 (The Investigation of Mineral Distribution at Spirit Rover Landing Site: Gusev Crater by CRISM Hyperspectral data and Target Detection Algorithm)

  • 백현섭;김광은
    • 대한원격탐사학회지
    • /
    • 제32권5호
    • /
    • pp.403-412
    • /
    • 2016
  • Compact Reconnaissance Imaging Spectrometer for Mars(CRISM)은 489개의 밴드를 가지는 화성정찰궤도선의 초분광 카메라로써 이를 이용한 화성 지표의 광물 분포에 대한 많은 연구가 진행되어 왔다. 본 연구에서는 USGS의 스펙트럼 라이브러리를 기반으로 화성 Gusev Crater의 Spirit(Mars Exploration Rover A) 로버 착륙지에 대한 CRISM 영상에 Matched Filter와 Adaptive Cosine Estimator(ACE) 표적 탐지 알고리즘을 적용하여 광물 분포를 확인하고자 하였다. 연구 결과 감람석, 휘석, 자철석 등의 광물들이 Gusev 크레이터의 Columbia Hills에서 탐지되어 Spirit 로버의 지상 탐사 결과와 일치하고 있음을 확인하였다. 본 연구는 그간 CRISM의 광물 분포 연구가 일부 몇 개 밴드의 반사도만을 통해 계산된 광물 지수에 의존하던 것에서 관측 파장 대역 전체를 활용하는 초분광 표적 탐지 알고리즘을 이용한 새로운 적용방법을 제시한 것에 의의가 있다고 할 수 있다.

First Light of the MIRIS, a Compact Wide-field Space IR Telescope

  • Han, Wonyong;Lee, Dae-Hee;Jeong, Woong-Seob;Park, Youngsik;Moon, Bongkon;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.49.2-49.2
    • /
    • 2014
  • The MIRIS (Multi-purpose InfraRed Imaging System) is a compact IR space Telescope, which has been developed by KASI since 2008 as the main payload of Korean STSAT-3. It was launched successfully by a Dnepr Rocket at Yasny Launch site, Russia in November 2013. After the launch, the STSAT-3 successfully settled down at Sun synchronous orbit with altitude of ~ 600km. Communications were regularly made between the ground station and the MIRIS with other secondary payload. We made a series of tests of the MIRIS during the verification period and found that all functions including the passive cooling are working as expected. The MIRIS has a wide-field of view $3.67{\times}3.67$ degrees and wavelength coverage from 0.9 to 2.0 micro-meter with the angular resolution of 51.6 arcsec. The main science missions of the MIRIS are (1) mapping of the Galactic plane with Paschen-alpha line (1.88 micro-meter) for the study of warm interstellar medium and (2) the measurement of large angular fluctuations of cosmic near infrared background radiation with I (1.05 micro meter) and H (1.6 micro meter) bands to identify their origin. We present the results of MIRIS initial operation in this paper.

  • PDF

Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구 (Research about ESPI System Algorithm Development that Use Modulating Laser)

  • 김성종;강영준;박낙규;이동환
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

피로 균열 성장 지연에 대한 중성자 회절 응력 분석 (Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction)

  • 서석호;;우완측;이수열
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

Capturing the Underlying Structure of a 'Segment-line' City: Its Configurational Evolution and Functional Implications

  • Ling, Michelle Xiaohong
    • 국제초고층학회논문집
    • /
    • 제6권2호
    • /
    • pp.139-147
    • /
    • 2017
  • Analyzing morphological evolution over a long period of time is deemed an effective way to identify problems occurring in the process of urban development, in addition to achieving a fundamental understanding of socio-cultural changes and growth rooted from the context. As far as the urban morphology is concerned, Hong Kong is characterized by its unique high-density and compact layout patterns, which have aroused the interest of a number of authors in the urban design domain. Whilst an increasing number of redevelopment projects in Hong Kong were criticized for ignoring and destroying the old urban fabric, there is a need for research to investigate the origins and changes of various urban patterns and their implications for society. By employing the theories and techniques of space syntax, this paper accordingly provides a morphological analysis based on the Wanchai District - a 'Segment-line' city, which particularly epitomizes various urban grids of Hong Kong and may have different implications for functional aspects. By axial-mapping the urban layouts of five stages of growth since 1842 and subsequently investigating their spatial and functional transformation over the past 170 years, this paper identifies a series of spatial characteristics underlying different grid patterns, as well as achieves a precise understanding of their ever changing relationship. Based on these understandings, this paper intends to provide valuable reference and guidance for upcoming spatial development in Hong Kong and other regions.

패션 트렌트(2010~2019)의 주요 요소로서 소재 - 텍스트마이닝을 통한 분석 - (Material as a Key Element of Fashion Trend in 2010~2019 - Text Mining Analysis -)

  • 장남경;김민정
    • 한국의류산업학회지
    • /
    • 제22권5호
    • /
    • pp.551-560
    • /
    • 2020
  • Due to the nature of fashion design that responds quickly and sensitively to changes, accurate forecasting for upcoming fashion trends is an important factor in the performance of fashion product planning. This study analyzed the major phenomena of fashion trends by introducing text mining and a big data analysis method. The research questions were as follows. What is the key term of the 2010SS~2019FW fashion trend? What are the terms that are highly relevant to the key trend term by year? Which terms relevant to the key trend term has shown high frequency in news articles during the same period? Data were collected through the 2010SS~2019FW Pre-Trend data from the leading trend information company in Korea and 45,038 articles searched by "fashion+material" from the News Big Data System. Frequency, correlation coefficient, coefficient of variation and mapping were performed using R-3.5.1. Results showed that the fashion trend information were reflected in the consumer market. The term with the highest frequency in 2010SS~2019FW fashion trend information was material. In trend information, the terms most relevant to material were comfort, compact, look, casual, blend, functional, cotton, processing, metal and functional by year. In the news article, functional, comfort, sports, leather, casual, eco-friendly, classic, padding, culture, and high-quality showed the high frequency. Functional was the only fashion material term derived every year for 10 years. This study helps expand the scope and methods of fashion design research as well as improves the information analysis and forecasting capabilities of the fashion industry.