DOI QR코드

DOI QR Code

Circuit Performance Prediction of Scaled FinFET Following ITRS Roadmap based on Accurate Parasitic Compact Model

정확한 기생 성분을 고려한 ITRS roadmap 기반 FinFET 공정 노드별 회로 성능 예측

  • Choe, KyeungKeun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kwon, Kee-Won (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, SoYoung (College of Information and Communication Engineering, Sungkyunkwan University)
  • 최경근 (성균관대학교 정보통신대학) ;
  • 권기원 (성균관대학교 정보통신대학) ;
  • 김소영 (성균관대학교 정보통신대학)
  • Received : 2015.06.25
  • Accepted : 2015.09.30
  • Published : 2015.10.25

Abstract

In this paper, we predicts the analog and digital circuit performance of FinFETs that are scaled down following the ITRS(International technology roadmap for semiconductors). For accurate prediction of the circuit performance of scaled down devices, accurate parasitic resistance and capacitance analytical models are developed and their accuracies are within 2 % compared to 3D TCAD simulation results. The parasitic capacitance models are developed using conformal mapping, and the parasitic resistance models are enhanced to include the fin extension length($L_{ext}$) with respect to the default parasitic resistance model of BSIM-CMG. A new algorithm is developed to fit the DC characteristics of BSIM-CMG to the reference DC data. The proposed capacitance and resistance models are implemented inside BSIM-CMG to replace the default parasitic model, and SPICE simulations are performed to predict circuit performances such as $f_T$, $f_{MAX}$, ring oscillators and common source amplifier. Using the proposed parasitic capacitance and resistance model, the device and circuit performances are quantitatively predicted down to 5 nm FinFET transistors. As the FinFET technology scales, due to the improvement in both DC characteristics and the parasitic elements, the circuit performance will improve.

본 논문에서는 ITRS(International Technology Roadmap for Semiconductors)를 따라 스케일 다운된 FinFET 소자의 디지털 및 아날로그 회로의 성능을 예측했다. 회로 성능의 정확한 예측을 위해 기생 커패시턴스와 기생 저항 모델을 개발해 3D Technology CAD 해석 결과와 비교해 오차를 2 % 미만으로 달성했다. 기생 커패시턴스 모델은 conformal mapping 방식을 기반으로 모델링 되었으며, 기생 저항 모델은 BSIM-CMG에 내장된 기생 저항 모델을 핀 확장 영역 구조 변수($L_{ext}$) 변화에 따른 기생 저항 성분 변화를 반영 할 수 있도록 개선했다. 또한, 공정 단위 변화에 대해 소자의 전압전류의 DC 특성을 반영하기 위해 BSIM-CMG 모델의 DC 피팅을 진행하는 알고리즘을 개발했다. BSIM-CMG에 내장된 기생 모델을 본 연구에서 개발한 저항과 커패시턴스 모델로 대체해 압축 모델 내부에 구현하여, SPICE 시뮬레이션을 통해 스케일 다운된 FinFET 소자의 $f_T$, $f_{MAX}$, 그리고 링 오실레이터와 공통 소스 증폭기의 기생 성분으로 인한 특성변화를 분석했다. 정확한 기생 성분 모델을 적용해 5 nm FinFET 소자까지 회로 특성을 정량적으로 제시했다. 공정 단위가 감소함에 따라 소자의 DC 특성이 개선될 뿐만 아니라 기생 성분의 영향이 감소하여, 회로 특성이 향상됨을 예측했다.

Keywords

References

  1. Frank, M.M., "High-k/metal gate innovations enabling continued CMOS scaling," 2011 Proceedings of ESSCIRC (ESSCIRC), pp. 50-58, Sept. 2011.
  2. Ran Liu, "Process characterization for strained Si on SOI CMOS devices," Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference, pp. 138-141, Oct. 2008.
  3. Jyh-Chyurn Guo, "Halo and LDD Engineering for Multiple VTH High Performance Analog CMOS Devices," IEEE Trans. Semiconductor Manufacturing, vol. 20, no. 3, pp. 313 - 322, Aug. 2007. https://doi.org/10.1109/TSM.2007.901408
  4. James D., "Intel Ivy Bridge unveiled - The first commercial tri-gate, high-k, metal-gate CPU," Custom Integrated Circuits Conference (CICC), pp. 1-4, Sept. 2012.
  5. Auth C., Allen C., Blattner A. et al., "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," VLSI Technology (VLSIT), pp. 131-132, June. 2012.
  6. Natarajan S., Agostinelli M., Akbar S. et al., "A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 ${\mu}m2$ SRAM cell size," VLSI Technology (VLSIT), pp. 131-132, June. 2012.
  7. Yen-Huei C., Wei-Min C., Wei-Cheng W., et al., "A 16nm 128Mb SRAM in high-$\kappa$ metal-gate FinFET technology with write-assist circuitry for low-VMIN applications," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 238-239, Feb. 2014.
  8. Amat E., Canal R., et al., "Variability robustness enhancement for 7nm FinFET 3T1D-DRAM cells," IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 81 - 84, Aug. 2013.
  9. Lee K., An T., Joo S., Kwon K.-W., Kim S., "Modeling of parasitic fringing capacitance in multifin trigate FinFETs." Electron Devices, IEEE Transactions, vol. 60, no. 5, pp. 1786-1789, 2013. https://doi.org/10.1109/TED.2013.2252467
  10. SeokSoon Noh, KeeWon Kwon, and SoYoung Kim, "Analysis of Process and Layout Dependent Analog Performance of FinFET Structure using 3D Device Simulator," The Journal of The Institute of Electrical Engineers of Korea, vol. 50, no. 4, pp. 795-802, April. 2013.
  11. An, TaeYoon, et al. "Performance Optimization Study of FinFETs Considering Parasitic Capacitance and Resistance." Journal of semiconductor technology and science, vol. 14, no. 5, pp. 525-536, 2014. https://doi.org/10.5573/JSTS.2014.14.5.525
  12. Choe, Kyeungkeun, TaeYoon An, and SoYoung Kim., "Accurate fringe capacitance model considering RSD and metal contact for realistic FinFETs and circuit performance simulation." Simulation of Semiconductor Processes and Devices (SISPAD), pp. 29 - 32, Sept. 2014.
  13. Lacord J., Ghibaudo G., and Boeuf F., "Comprehensive and Accurate Parasitic Capacitance Models for Two - and Three-Dimensional CMOS Device Structures." IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1332-1344, April. 2012. https://doi.org/10.1109/TED.2012.2187454
  14. Bansal A., Paul B.C., Roy K., "An Analytical Fringe Capacitance Model for Interconnects Using Conformal Mapping" IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 12, pp. 2765 - 2774, Nov. 2006. https://doi.org/10.1109/TCAD.2006.882489
  15. Bansal A., Paul B.C., Roy K., "Modeling and optimization of fringe capacitance of nanoscale DGMOS devices." IEEE Trans. Electron Devices, vol. 52, no. 2, pp. 256-262, Jan. 2005. https://doi.org/10.1109/TED.2004.842713
  16. Ivanov, Valentin I., and Michael K. Trubetskov. Handbook of conformal mapping with computer-aided visualization. CRC press, 1994.
  17. Tekleab, Daniel, S. Samavedam, and P. Zeitzoff. "Modeling and analysis of parasitic resistance in double-gate FinFETs." Electron Devices, IEEE Transactions, vol. 56, no. 10, pp. 2291-2296, 2009. https://doi.org/10.1109/TED.2009.2028377
  18. Sohn, Chang-Woo, et al. "Analytic model of S/D series resistance in trigate FinFETs with polygonal epitaxy." Electron Devices, IEEE Transactions, vol. 60, no. 4, pp. 1302-1309, 2013. https://doi.org/10.1109/TED.2013.2246790
  19. TCAD Raphael User's Guide, Synopsys.
  20. BSIM-CMG108.0.0 Technical Manual, Aug. 2014.
  21. HSPICE User's Guide, Synopsys.
  22. The International Technology Roadmap for Semiconductors (ITRS), 2013.
  23. Taur, Yuan, and Tak H. Ning. Fundamentals of modern VLSI devices. Cambridge university press, 2009.
  24. Y. -J. Lee, T. -C. Cho, K. -H. Kao, P. -J. Sung, F. -K. Hsueh, P. -C. Huang, C. -T. Wu, S. -H. Hsu, W. -H. Huang, et al., "A novel junctionless FinFET structure with sub-5nm shell doping profile by molecular monolayer doping and microwave annealing," IEEE International Electron Devices Meeting (IEDM), pp. 32.7.1-32.7.4, Dec. 2014.
  25. R. -H. Baek, D. -H. Kim, T. -W. Kim, et al., "Electrostatics and performance benchmarking using all types of III-V multi-gate FinFETs for sub 7nm technology node logic application," IEEE Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, pp. 1-2., June 2014.
  26. C. Binjie, A. -R. Brown, W. Xingsheng, and A. Asenov "Statistical variability study of a 10nm gate length SOI FinFET device," 2012 Silicon Nanoelectronics Workshop (SNW), pp. 1-2, June 2012.
  27. W. -Y. Shien, C. Y. Lin, M. C. Chiang et al., "A 16nm FinFET CMOS technology for mobile SoC and computing applications," IEEE International Electron Devices Meeting (IEDM), pp. 9.1.1 - 9.1.4, Dec. 2013.
  28. TCAD Sentaurus User's Guide, Synopsys.

Cited by

  1. Investigation of Electrothermal Behaviors of 5-nm Bulk FinFET vol.64, pp.12, 2017, https://doi.org/10.1109/TED.2017.2766214