• 제목/요약/키워드: compact Riemann surface

검색결과 4건 처리시간 0.015초

ON FIXED POINTS ON COMPACT RIEMANN SURFACES

  • Gromadzki, Grzegorz
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.1015-1021
    • /
    • 2011
  • A point of a Riemann surface X is said to be its fixed point if it is a fixed point of one of its nontrivial holomorphic automorphisms. We start this note by proving that the set Fix(X) of fixed points of Riemann surface X of genus g${\geq}$2 has at most 82(g-1) elements and this bound is attained just for X having a Hurwitz group of automorphisms, i.e., a group of order 84(g-1). The set of such points is invariant under the group of holomorphic automorphisms of X and we study the corresponding symmetric representation. We show that its algebraic type is an essential invariant of the topological type of the holomorphic action and we study its kernel, to find in particular some sufficient condition for its faithfulness.

Semigroups which are not weierstrass semigroups

  • Kim, Seon-Jeong
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.187-191
    • /
    • 1996
  • Let C be a nonsingular complex projective algebraic curve (or a compact Riemann surface) of genus g. Let $M(C)$ denote the field of meromorphic functions on C and N the set of all non-negative integers.

  • PDF

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF