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ON FIXED POINTS ON COMPACT RIEMANN SURFACES

Grzegorz Gromadzki

Abstract. A point of a Riemann surface X is said to be its fixed point
if it is a fixed point of one of its nontrivial holomorphic automorphisms.

We start this note by proving that the set Fix(X) of fixed points of a
Riemann surface X of genus g ≥ 2 has at most 82(g − 1) elements and
this bound is attained just for X having a Hurwitz group of automor-

phisms, i.e., a group of order 84(g−1). The set of such points is invariant
under the group of holomorphic automorphisms of X and we study the
corresponding symmetric representation. We show that its algebraic type
is an essential invariant of the topological type of the holomorphic action

and we study its kernel, to find in particular some sufficient conditions
for its faithfulness.

1. Introduction

One of the trends in the study of Riemann surfaces consists in considering
distinguished families of points on them. Important families of such points
form for example Weierstrass points. They are invariant with respect to the
action of the group of holomorphic automorphisms and the principal properties
of the corresponding representation in symmetric groups leads, for example, to
a proof of the Schwarz theorem on finiteness of such group (see [3, 8]).

Here we consider fixed points, another family of distinguished points on
surfaces with nontrivial automorphisms; such surfaces are important as they
represent singular loci in moduli spaces of compact Riemann surfaces of given
genus. So, call a point of a Riemann surface to be its fixed point if it is a
fixed point of one of its automorphisms. Such points have been studied in [1, 3,
7, 8, 9, 11] among the others and also relations between them and Weierstrass
points have been established (eg. [4, 7, 8, 10]). In principal, the study of
such points allows better understanding of the topology of the holomorphic
actions. However the spectrum of their applications is much more extended;
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for example, a careful study of automorphisms with the maximal number of
fixed points allowed us to find the bounds for the number of cyclic p-gonal
coverings the Riemann sphere by surfaces of the genera relatively low [5, 6]; for
the genera large enough there is one such covering by the classical Castelnuovo-
Severi theorem [2, 12].

It is well known that a single automorphism of a Riemann surface X of genus
g ≥ 2 has at most 2g+2 fixed points, and so the Hurwitz bound yields the bound
168(g2−1) for the size of the set Fix(X) of fixed points of a Riemann surface of
genus g. In this note we find a linear bound by proving that |Fix(X)| ≤ 82(g−1)
and we show that this bound is sharp just for Riemann surfaces with Hurwitz
groups of automorphisms. This set is invariant under the action of the group
Aut(X) of automorphisms of X and we study the corresponding representation
of Aut(X) in the symmetric group. Some information on such representation
of Hurwitz groups on Weierstrass points has been obtained recently in [10]. We
shall show that algebraic type of our symmetric representation is an essential
finite invariant of the topological type of the action and we study its kernel to
find in particular some sufficient conditions for its faithfulness.

2. Preliminaries

We shall use in the paper a combinatorial approach based on the Riemann
uniformization theorem and the structure of Fuchsian groups. A Fuchsian
group is a discrete and co-compact group Λ of orientation preserving isometries
of the hyperbolic plane H with the compact orbit space which inherits the
complex structure from H and hence is a compact Riemann surface. The
algebraic structure of a Fuchsian group is coded in its signature which is a
sequence of numbers and symbols of the form (h;m1, . . . ,mr). In such case
mentioned Riemann surface H/Λ has genus h, called the orbit genus of Λ and
the canonical projection π : H → H/Λ branches over r points with ramification
indices m1, . . . ,mr which are called the periods of Λ. When r = 0, we write
(h;−) and call Λ to be a Fuchsian surface group. A Fuchsian group Λ with a
general signature (h;m1, . . . ,mr) has a presentation

⟨α1, β1, . . . , αh, βh, γ1, . . . , γr : γm1
1 , . . . , γmr

r , γ1 · · · γr[α1, β1] · · · [αh, βh]⟩

which we call the canonical. The elements α1, β1, . . . , αh, βh represent hyper-
bolic translations and the elements γ1, . . . , γr elliptic transformations. Any
element of finite order in Λ is conjugate to a power of some canonical elliptic
generator which easily characterizes homomorphisms θ : Λ → G with torsion
free kernels, which are important if we study holomorphic actions on Riemann
surfaces.

By the Riemann uniformization theorem, a compact Riemann surface X of
genus g ≥ 2 is conformally equivalent to the orbit space H/Γ of the hyperbolic
plane with respect to the action of a Fuchsian surface group Γ with signature
(g;−). Under such equivalence, a finite group G is a group of automorphisms
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of X if and only if G = Λ/Γ for some Fuchsian group Λ containing Γ as a
normal subgroup which allows to identify holomorphic actions of G on Riemann
surfaces with epimorphism θ : Λ → G with torsion free kernels, called surface-
kernel epimorphisms. The periods of Λ together with its orbit genus will be
ramification data of the action. In such a situation, the well known Riemann-
Hurwitz formula says that

|G| = µ(Γ)/µ(Λ),

where µ(Λ) denotes the hyperbolic area of a fundamental region of Λ, which
equals

2π

(
2h− 2 +

r∑
i=1

(
1− 1

mi

))
if Λ has signature (h;m1, . . . ,mr).

3. The total number of fixed points on a Riemann surface

It is worth to be mentioned that the known formula of Macbeath [9] for the
number of fixed points of a single automorphism of a Riemann surface X can
not be applied directly here due to its strictly quantitative character, and so in
particular, impossibility of finding the common part of the sets of fixed points
of two automorphisms. So we have to look first for a direct way of finding a
bound for the size of Fix(X).

Lemma 3.1. Let X be a Riemann surface with the group of automorphisms G
and with the ramification indices m1, . . . ,mr. Then Fix(X) has |G|(1/m1+ · · ·
+1/mr) elements.

Proof. Let λ1, . . . , λr be canonical elliptic generators of Λ and let h1, . . . , hr
be their fixed points. Then G acts on X by θ(λ)π(h) = π(λh). So π(h) is a
fixed point of X if and only if γλ is an elliptic element with the fixed point
h for some γ ∈ Γ and λ ∈ Λ. However each elliptic element is conjugate to a
power of a canonical elliptic generator, say γλ = δλni

i δ
−1 and so in particular

h = δhi. Thus each fixed point of X has the form π(δhi) for some δ ∈ Λ and
i ≤ r. However π(δhi) = π(δ′hi) if and only if hi is a fixed point of δ−1γδ′ for
some γ ∈ Γ and so if and only if δ−1γδ′ = λni

i for some ni, which in turn is
equivalent to δ−1δ′ ∈ ⟨λi⟩Γ. Therefore λi yields

[Λ : ⟨λi⟩Γ] = [Λ/Γ : ⟨λi⟩Γ/Γ] = |G|/mi

fixed points on X which proves the lemma. □

Theorem 3.2. A Riemann surface X of genus g ≥ 2 has at most 82(g − 1)
fixed points and this bound is attained for all Riemann surfaces with Hurwitz
group of automorphisms.
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Proof. Let, as above, X be represented as the orbit space H/Γ for some Fuch-
sian surface group with signature (g;−) and let its group of automorphism G be
given as Λ/Γ for some Fuchsian group Λ, say with signature (g′;m1, . . . ,mr),
where r ≥ 1 if X has any fixed points.

If g′ ≥ 1 then µ(Λ) ≥ rπ and so by the Hurwitz-Riemann formula |G| ≤
4(g−1)/r. But 1/m1+· · ·+1/mr ≤ r/2. So |Fix(X)| ≤ 2(g−1) by Lemma 3.1.
So we can assume that g′ = 0. If now r ≥ 5, then µ(Λ) ≥ (r − 4)π. So |G| ≤
4(g−1)/(r−4) and therefore |Fix(X)| ≤ r|G|/2 = 2(g−1)r/(r−4) ≤ 10(g−1)
by Lemma 3.1. Now let r = 4. Then one of the periods must be greater than
2 since otherwise µ(Λ) = 0. But then µ(Λ) ≥ π/3. So |G| ≤ 12(g − 1) and
therefore |Fix(X)| ≤ 24(g − 1).

So we can assume that r = 3. But then using again Lemma 3.1 and the
Hurwitz Riemann formula, the number of fixed points of X equals

2(g − 1)

1− (1/m1 + 1/m2 + 1/m3)
(1/m1 + 1/m2 + 1/m3).

Now the above equals

2(g − 1)

1/(1/m1 + 1/m2 + 1/m3)− 1

and so we have to look for a positive minimum for 1− (1/m1 + 1/m2 + 1/m3)
and hence for a hyperbolic triangle with the smallest area. But, by a Siegel
remark [13], such a triangle has angles π/2, π/3, π/7. Thus we obtain the
above minimum for {m1,m2,m3} = {2, 3, 7}. Therefore a Riemann surface
of genus g ≥ 2 has at most 82(g − 1) fixed points and this bound is attained
for Riemann surfaces having Hurwitz groups of automorphisms, i.e., groups of
order 84(g − 1), the biggest possible. □

4. On the induced representation

It is obvious that the set Fix(X) of fixed points of a Riemann surface X is
invariant with respect to the action of its group of automorphisms G = Aut(X).
Assume that the action is given by a surface-kernel epimorphism θ : Λ → G.
Then, since each fixed point of X has a form π(δhi), where hi is the fixed point
of canonical elliptic generator λi of Λ and δ ∈ Λ, the representation

θ̃ : G→ Sym(Fix(X))

is defined by θ̃(g)(π(δhi)) = π(λδhi), where θ(λ) = g.

First we shall show that the algebraic type of our representation is an in-
variant of the topological type of the action. Recall that two holomorphic
actions given by surface-kernel epimorphisms θ : Λ → G and θ′ : Λ′ → G′ are
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topologically equivalent if and only if the diagram

Λ
φ // Λ′

G
ψ //

��
θ

G′
��
θ′

commutes for some isomorphisms φ : Λ → Λ′, ψ : G → G′. Next, two sym-
metric representations ρ : G → Sym(F ), ρ′ : G′ → Sym(F ′) are said to be
equivalent if there is an isomorphism α : G → G′ and a bijection β : F → F ′

such that the diagram

G
α // G′

Sym(F )
β̃ //

��
ρ

Sym(F ′),
��
ρ′

where β̃(f) = βfβ−1, commutes.

Theorem 4.1. Topologically equivalent holomorphic actions give rise to equiv-
alent symmetric representations.

Proof. Let θ : Λ → G and θ′ : Λ′ → G′ define topologically equivalent holomor-
phic actions on Riemann surfaces X and X ′ respectively and let φ : Λ → Λ′, ψ :
G→ G′ be the corresponding isomorphisms. Given a set λ1, . . . , λr of canonical
elliptic generators of Λ, φ(λ1), . . . , φ(λr) is a set of canonical elliptic genera-
tors of Λ′. Let h1, . . . , hr and h′1, . . . , h

′
r be their sets of fixed points. Then

straightforward calculation shows that ψ and bijection β : Fix(X) → Fix(X ′)
given by β(π(λhi)) = π′(φ(λ)h′i) establish the equivalence of the corresponding
representations. □

The following example shows that our invariant is essential, i.e., it distin-
guishes not only actions having different ramification data, but also topologi-
cally distinct actions within the same ramification type.

Example 4.2. For a Fuchsian group Λ with signature (0; 3, 3, 3, 3, 3, 3) and
the finite group G = Z3 ⊕ Z3 = ⟨a, b⟩ consider two actions given by the epi-
morphisms θ1, θ2 : Λ → G induced by the assignments:

θ1(λ1) = a, θ1(λ2) = a, θ1(λ3) = a, θ1(λ4) = b, θ1(λ5) = b, θ1(λ6) = b,
θ2(λ1) = a, θ2(λ2) = a, θ2(λ3) = a2, θ2(λ4) = a2, θ2(λ5) = b, θ2(λ6) = b2.

Then

θ̃1(a) = (1, 2, 3)(4, 5, 6)(7, 8, 9), θ̃1(b) = (10, 11, 12)(13, 14, 15)(16, 17, 18),

θ̃2(a) = (1, 2, 3)(4, 5, 6), θ̃2(b) = (7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)

and so our actions are topologically distinct. □
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Now we shall look for the kernel of our representation θ̃ in function of a
surface-kernel epimorphism θ : Λ → G defining holomorphic action of G on the
Riemann surface X = H/Γ, where Γ = ker θ.

Theorem 4.3. Let X be a Riemann surface whose group of automorphisms
G is given by an epimorphism θ and let λ1, . . . , λr be a system of canonical
elliptic generators corresponding to the ramification data of the action. Then
ker θ̃ ⊆ ⟨θ(λ1)⟩∩ · · ·∩⟨θ(λr)⟩ and the equality holds if θ(λ1), . . . , θ(λr) generate
G.

Proof. Let hi be the fixed point of λi. Then π(h1), . . . , π(hr) ∈ Fix(X). Let

g = θ(λ) ∈ ker θ̃. Then for arbitrary i, π(hi) = gπ(hi) = π(λ(hi)) and thus
hi = γ(λ(hi)) for some γ ∈ Γ. But then λ ∈ ⟨λi⟩Γ and so θ(λ) ∈ ⟨θ(λi)⟩.

Suppose now that θ(λ1), . . . , θ(λr) generate G and let x ∈ Fix(X). Then
x = π(δhj) for some δ ∈ Λ which is equal to γλn1

i1
· · ·λns

is
for some γ ∈ ker θ. If

g ∈ ⟨θ(λ1)⟩ ∩ · · · ∩ ⟨θ(λr)⟩, then it commutes with θ(λ1), . . . , θ(λr). So

gπ(δhj) = θ(λ
kj
j )π((λn1

i1
· · ·λns

is
)hj)

= θ(λ
kj
j )θ(λn1

i1
) · · · θ(λns

is
)π(hj)

= θ(λn1
i1
) · · · θ(λns

is
)θ(λ

kj
j )π(hj)

= θ(λn1
i1

· · ·λns
is
)π(λ

kj
j hj)

= θ(λn1
i1

· · ·λns
is
)π(hj)

= π((λn1
i1

· · ·λns
is
)hj)

= π(δhj)

and therefore g ∈ ker θ̃. □

Corollary 4.4. Let X be a Riemann surface whose group of automorphisms
G is given by an epimorphism θ and let m1, . . . ,mr be the ramification data of
the action. If gcd (m1, . . . ,mr) = 1, then θ̃ is faithful.

Theorem 4.5. Let λ1, . . . , λr, θ and G be as in the previous theorem and let
g−1⟨θ(λi)⟩g ∩ ⟨θ(λi)⟩ = 1 for some i and g ∈ G. Then θ̃ is faithful.

Proof. Let g = θ(λ) for some λ ∈ Λ and let g′ ∈ ker θ̃. Then by Theorem
4.3, g′ ∈ ⟨θ(λ1)⟩ ∩ · · · ∩ ⟨θ(λr)⟩. Let g′ = θ(λi)

ni . Then π(λhi) = g′π(λhi) =

π((λni
i λ)hi) and so λhi = (γλni

i λ)hi for some γ ∈ Γ. Thus λ−1γλni
i λ = λkii for

some ki, which gives g−1θ(λi)
nig = θ(λi)

ki . So g′ = θ(λi)
ni = 1. □
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