• Title/Summary/Keyword: commercial production

Search Result 2,222, Processing Time 0.028 seconds

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.

Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers

  • Kim, Sang-Woo;Kim, Sinil;Lee, Hyun-Jun;Park, Ju-Wan;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.252-255
    • /
    • 2013
  • Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens.

Web-based Draft Verification System for Injection Mold Design (사출금형설계를 위한 웹기반 구배 검증 시스템)

  • Yeon Kwang-Heum;Song In-Ho;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1353-1360
    • /
    • 2005
  • Injection-molded products serve a wide range of applications in our modem lives and their significance is ever increasing. However, difficulty of communication among related companies under the present system results in increase of lead time and decrease of production efficiency. The objective of this paper is the development of a web-based draft verification system in mold design processes. Although several commercial CAD systems offer draft verification functions, those systems are very expensive and inadequate to perform collaborative works. For collaborative work under the distributed environment, the proposed system uses native file transforming of CAD data into optimal format by using the ACIS kernel and InterOp. Functions of draft verification modules are constructed over the ActiveX control using the visual C++ and OpenGL. Therefore, collaborators related to the development of a new product are able to verify the draft and undercut over the Internet without commercial CAD systems. The system helps to reduce production cost, errors and lead-time to the market. Performance of the system is confirmed through various case studies.

Revisit to the Commercial-scale Production of Rhamnolipids (재조명되는 람노리피드 양산화 동향연구)

  • Oh, Kyeongseok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1219-1228
    • /
    • 2021
  • Rhamnolipids are recognized as eco-friendly biosurfactants and produced by the bio-process employing bacteria. Pseudomons aeruginosa is well-known to produce rhamnolipids in high yield during fermentation process. Rhamnose and 𝛽-hydroxylated fatty acid are main chemicals for rhamnolipids, which are produced in the form of congener mixtures. In this paper, the synthetic mechanism of rhamnolipids within bacteria cells was presented in part and foam control technologies were qualitatively described. Foam control during fermentation process was important to regulate a continuous process. During last decade, the technologies are developed enough to challenge to a commercial-scale production. In particular, rhamnolipids will be more valuable if these can be applicable to value-added chemicals, such as medicines.

A study of mechanical properties with FDM 3D printing layer conditions (FDM 3D Printing 적층조건에 따른 기계적 물성의 연구)

  • Kim, Bum-Joon;Lee, Hong-Tae;Sohn, Il-Seon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

A Survey on Characteristics and Application Domains of 3D Factory Simulation Technology (3D 팩토리 시뮬레이션 기술의 특징과 응용 분야에 대한 고찰)

  • Jo, Da-Seol;Kim, Jun-Woo
    • The Journal of Information Systems
    • /
    • v.27 no.4
    • /
    • pp.35-70
    • /
    • 2018
  • Purpose Recently, 3D factory simulation technology has emeged as a powerful tool for modeling and analysis of a wide range of production systems, however, it has been not paid much attention in Korea. In this context, this paper aims to provide a comprehensive literature review on discrete event simulation softwares and introduce a promising 3D factory simulation software called FlexSim and its application domains. Design/methodology/approach In order to demonstrate worldwide popularity and technical superiority of FlexSim software, we analyzed the recent list of rankings for commercial discrete simulation softwares released by winter simulation conference and users' opinions collected from business software review site. Moreover, several main application domains are derived from a review of the previous research papers that deal with applications of FlexSim software. Findings FlexSim software recently moved up the list of major commercial simulation softwares, and technical superiorities of the software demonstrate that it is a promising tool for practical 3D factory simulation. Moreover, recent research papers suggest that FlexSim software can be used as a component of smart factory system. In this context, it is expected that FlexSim software becomes more popular in the era of industry 4.0.

Optimizing the composition of the medium for the viable cells of Bifidobacterium animalis subsp. lactis JNU306 using response surface methodology

  • Dang, Thi Duyen;Yong, Cheng Chung;Rheem, Sungsue;Oh, Sejong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.603-613
    • /
    • 2021
  • This research improved the growth potential of Bifidobacterium animalis subsp lactis strain JNU306, a commercial medium that is appropriate for large-scale production, in yeast extract, soy peptone, glucose, L-cysteine, and ferrous sulfate. Response surface methodology (RSM) was used to optimize the components of this medium, using a central composite design and subsequent analyses. A second-order polynomial regression model, which was fitted to the data at first, significantly lacked fitness. Thus, through further analyses, the model with linear and quadratic terms plus two-way, three-way, and four-way interactions was selected as the final model. Through this model, the optimized medium composition was found as 2.8791% yeast extract, 2.8030% peptone soy, 0.6196% glucose, 0.2823% L-cysteine, and 0.0055% ferrous sulfate, w/v. This optimized medium ensured that the maximum biomass was no lower than the biomass from the commonly used blood-liver (BL) medium. The application of RSM improved the biomass production of this strain in a more cost-effective way by creating an optimum medium. This result shows that B. animalis subsp lactis JNU306 may be used as a commercial starter culture in manufacturing probiotics, including dairy products.

Nocardia orientalis 변이주에 의한 고농도 혼합당을 이용한 반코마이신 생산

  • 김창호;고영환;고중환
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.404-407
    • /
    • 1996
  • The effects of carbon sources on vancomycin production were investigated using Nocardia orientalis CSVC 3300. Among carbon sources tested, glucose, maltose and fructose were effective for the production of vancomycin. Glucose was favored for growth, but decrease the production of vancomycin at the concentration above 7.5%. In comparison, maltose did not decrease the production of vancomycin up to the concentration of 20%. When the mixture of glucose and maltose was used in the ratio 1:3 to 1:4, the highest production of vancomycin was achieved. When glucose concentration was set at 3.0%, catabolite repression could not be observed up to total sugar concentration of 16.0%. Fermentation was carried out using commercial hydrolyzed starch composed of glucose, maltose, maltotriose and maltotetraose, The initial glucose concentration was set at 3.0% and subsequent oligosaccharide consumption was monitored by checking their supernatant with HPLC. During initial cultivation for 38 hour, glucose was the sole carbon source leading to rapid growth. After cell growth stopped, the maltose and glucose concentrations increased due to degradation of maltotriose and maltotetraose, but glucose level was maintained at around 3.0%. After 70 hour fermentation, maltose slowly converted to glucose, and vancomycin production continued during the period.

  • PDF

High-Level Production of Astaxanthin by Fed-Batch Culture of Mutant Strain Phaffia rhodozyma AJ-6-1

  • KIM, SU-JIN;GEUN-JOONG KIM;DON-HEE PARK;YEON-WOO RYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.175-181
    • /
    • 2003
  • The production of a carotenoid astaxanthin, a growth-associated principal pigment, is limited in a batch cultivation, because a high glucose concentration severely inhibits the cell growth and also influences the carotenoid production. Therefore, a fermentation strategy including effective chemicals for the high-level production of cells and astaxanthin by a mutant strain Phaffia rhodozyma AJ-6-1 was developed in a fed-batch culture. First, a production medium for maximizing the cell and astaxanthin yields was formulated and optimized. Using this optimized medium, the highest cell and astaxanthin concentrations obtained were about 38.25 g/1 and 34.77 mg/1, respectively. In addition, an attempt was made to increase the amount of astaxanthin using effective chemicals such as ethanol and acetic acid, which are known at an inducer and/or precursor of carotenoid synthesis. When either 10g/1 ethanol or 5 g/1 acetic acid was added to investigate the resulting astaxanthin content, a relatively high astaxanthin concentration or 45.62 mg/l and 43.87 mg/1, respectively, was obtained, and the cell concentrations also increased slightly under these conditions. Therefore, these results imply that a fed-batch culture of the mutant strain P. rhodozyma AJ-6-1 could be effectively employed in the commercial production of astaxanthin, although the factors affecting the productivity remain to be elucidated.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.