DOI QR코드

DOI QR Code

Revisit to the Commercial-scale Production of Rhamnolipids

재조명되는 람노리피드 양산화 동향연구

  • Oh, Kyeongseok (Department of Chemical.and Environmental Technology, Inha Techincal College)
  • 오경석 (인하공업전문대학 화공환경과)
  • Received : 2021.08.30
  • Accepted : 2021.10.27
  • Published : 2021.10.30

Abstract

Rhamnolipids are recognized as eco-friendly biosurfactants and produced by the bio-process employing bacteria. Pseudomons aeruginosa is well-known to produce rhamnolipids in high yield during fermentation process. Rhamnose and 𝛽-hydroxylated fatty acid are main chemicals for rhamnolipids, which are produced in the form of congener mixtures. In this paper, the synthetic mechanism of rhamnolipids within bacteria cells was presented in part and foam control technologies were qualitatively described. Foam control during fermentation process was important to regulate a continuous process. During last decade, the technologies are developed enough to challenge to a commercial-scale production. In particular, rhamnolipids will be more valuable if these can be applicable to value-added chemicals, such as medicines.

친환경적 바이오 계면활성제의 하나인 람노리피드(rhamnolipid)의 제조는 Pseudomonas aeruginos 계열의 박테리아가 가장 많이 사용되며, 바이오 공정을 통해 생산된다. 람노리피드의 화학구조는 rhamnose당과 𝛽-hydroxylated fatty acid의 결합으로 이루어져 있으며, 바이오 공정을 통해 동질체 혼합물 형태로 생산된다. 발효(fermentation)공정 중 거품 제어가 수율을 결정하는 가장 중요한 요인으로 알려져 있다. 본 논문에서는, 박테리아 내부에서 일어나는 람노리피드 합성 메카니즘을 소개하였고, 발효공정에서 문제점으로 인식되었던 거품 제어 방법에 대한 최근 시도들을 살펴보았다. 10년 전과 비교하여, 람노리피드 양산화 가능성은 빠르게 높아지고 있다. 특히, 람노리피드와 같은 바이오 계면활성제는 의약품과 같은 고부가가치 제품으로 응용된다면, 시장의 요구가 더 커질 것으로 기대한다.

Keywords

References

  1. G. Soberon-Chavez, A. Gonzalez-Valdez, M. P. Soto-Aceves, M. Cocoti-Yanez, "Ramnolipids produced by Pseudomonas: from molecular genetics to the market", Microbial Biotechnology, Vol.14, No.1, pp.136-146, (2021). https://doi.org/10.1111/1751-7915.13700
  2. Tiso T, Thies S, Muller M, Tsvetanova L, Carraresi L, Broring S, Jaeger KE, Blank LM, Rhamnolipids: production, performance, and application, In book: Consequencies of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals, Handbook of hydrocarbon and lipid micrbiology (edited by S. Lee), pp.1-37, Springer, (2017). DOI 10.1007/978-3-319-31421-1_388-1
  3. F. Jackson, "What does Unilever's decarbonization plan mean for fossil fuels?", Forbes, Oct. 15, (2020). https://www.forbes.com/sites/feliciajackson/2020/10/15/what-does-unilevers-decarbonization-plan-mean-for-fossil-fuels/?sh=4e8d4b0244e2 (accessed Aug., 23, 2021)
  4. C. Bettenhausen, "Rhamnolipids rise as a green surfactant", Chemical &Engineering News, Vol. 98, No.23, Jun. 13, (2020). https://cen.acs.org/materials/biomaterials/Rhamnolipids-rise-green-surfactant/98/i23
  5. M. McCoy, "What's the best way to make green cleaning products?", Chemical & Engineering News, Vol. 94, No.3, Jan. 18, (2016).
  6. A. M. Adbel-Mawgoud, F. Lepine, E. Deziel, "Rhamnolipids: diversity of structures, microbial origins and roles", Applied Microbiology and Biotechnology, Vol. 86, pp. 1323-1336, (2010). https://doi.org/10.1007/s00253-010-2498-2
  7. P. Eslami, H. Hajfarajollah, S. Bazsefidpar, "Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa", RSC Advances, Vol.10, pp. 34014-34042, (2020). https://doi.org/10.1039/d0ra04953k
  8. Z. Gong, G. Yang, C. Che, J. Liu, M. Si, Q. He, "Foaming of rhamnolipids fermentation: impact factors and fermentation strategies", Microbial Cell Factories, Vol.20, Article ID 77, (2021).
  9. M.R. Bakkar, A.H.I. Faraag, E.R.S. Soliman, M.S. Fouda, A.M.M. Sarguos, G.R. McLean, A.M.S. Hebishy, G.E. Elkhouly, N.R. Raya, Y. Abo-zeid, "Rhamnolipids nano-micelles as a potential hand sanitizer", Antibiotics, Vol. 10, Article ID 751, (2021). https://doi.org/10.3390/antibiotics10070751
  10. S. Sharma, P. Datta, B. Kumar, P. Tiwari, L.M. Pandey, "Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815", Biodegradation, Vol.30, No.4, pp.301-312. (2019). https://doi.org/10.1007/s10532-019-09874-x
  11. R.S. Reis, A.G. Pereira, B.C. Neves, D.M.G. Freire, "Gene regulation of rhamnolipid production in Pseudomonas aeruginosa - A Review", Bioresource Technology, Vol.102, pp.6377-6384, (2011). https://doi.org/10.1016/j.biortech.2011.03.074
  12. L. Chrzanowski, L. Lawniczak, K. Czaczyk, "Why do microorganisms produce rhamnolipids ?", World Journal of Microbiology and Biotechnology, Vol. 28, pp. 401-419, (2012). https://doi.org/10.1007/s11274-011-0854-8
  13. F. Ji, L. Li, S. Ma, J. Wang, Y. Bao, "Production of rhamnolipids with a high specificity by Pseudomonas aeruginosa M408 isolated from petroleumcontaminated soil using olive oil as sole carbon source", Annals of Microbiology, Vol.66, pp.1145-1156, (2016). https://doi.org/10.1007/s13213-016-1203-9
  14. T. Tiso, R. Zauter, H. Tulke, B. Leuchtle, W.-J. Li, B. Behrens, A. Wittgens, F. Rosenau, H. Hayen, L.M. Blank, "Designer rhamnolipids by reduction of congener diversity: production and characterization", Microbial Cell Factories, Vol.16, Article ID 225, (2017).
  15. H. Chong, Q. Li, "Microbial production of rhamnolipids: opportunities, challenges and strategies", Microbial Cell Factories, Vol.16, Article ID 137, (2017).
  16. L. Dobler, L.F. Vilela, R.V. Almeida, B.C. Neves, "Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting", New Biotechnology, Vol. 33, No.1, pp.123-135, (2016). http://dx.doi.org/10.1016/j.nbt.2015.09.005
  17. S. Chen, Y.J. Wei, J. Chang, "Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2", Applied Microbiology and Biotechnology, Vol.76, pp.67-74, (2007). https://doi.org/10.1007/s00253-007-0980-2
  18. R. Sha, Q. Meng, L. Jiang, "The addition of ethanol as defoamer in fermentation of rhamnolipids", Journal of Chemical Technology & Biotechnology, Vol.87, pp. 368-373, (2012). https://doi.org/10.1002/jctb.2728
  19. J. Jiang, Y. Zu, X. Li, Q. Meng, X. Long, "Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control", Bioresource Technology, Vol.298, pp.1-10, (2020).
  20. I. Anic, I. Apolonia, P. Franco, R. Wichmann, "Production of rhamnolipids by integrated foam adsorption in a bioreactor system", AMB Express, Vol.8, Article ID 122, (2018).
  21. Z. Gong, Y. Peng, Q. Wang, "Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils", Biotechnology Letters, Vol.37, pp. 2033-2038, (2015). https://doi.org/10.1007/s10529-015-1885-2
  22. X. Long, R. Sha, Q. Meng, G. Zhang, "Mechanism study on the severe foaming of rhamnolipid in fermentation", Journal of Surfactants and Detergents, Vol.19, pp. 833-840, (2016). https://doi.org/10.1007/s11743-016-1829-4
  23. P. Singh, Y. Patil, V. Rale, "Biosurfactant production: emerging trends and promising strategies", Journal of Applied Microbiology, Vol.126, pp.2-13, (2019). https://doi.org/10.1111/jam.14057
  24. Z. Gong, Q. He, C. Che, J. Liu, G. Yang, "Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support", Bioprocess and Biosystems Engineering, Vol.43, pp.385-392, (2020). https://doi.org/10.1007/s00449-019-02234-2
  25. R. Cross, "Without these lipid shells, there would be no mRNA vaccines for COVID-19", Chemical & Engineering News, Vol.99, No.8, Mar. 6, (2021).