• Title/Summary/Keyword: combustible investigation

Search Result 39, Processing Time 0.023 seconds

A Forecast Study on the Fire Growth Rate and Investigation of Combustible for Fire Safety Design in Building (건축물 화재안전설계를 위한 주요가연물조사 및 화재성장율 예측에 관한 연구)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kim, Bong-Chan;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.133-135
    • /
    • 2012
  • The Fire growth rate(kW/s2) is significant impact on initial fire behavior in fire safety design of buildings. As a result of domestic existing combustibles, this study analyzed considering matters in techniques for calculating caloric values, and then made an investigation sheet. By utilizing written combustion sheets, the study could suggest a standard model at common houses and dense ones after getting caloric value information in dense ones. As a result, fire growth rate is experiment 1(0.01), experiment 2(0.0048), FDS(0.0072), MATSUYAMA equation(0.0144).

  • PDF

Inhibitory Effect of Solid Inhibitors on LPG Combustible Mixtures (LPG 가연성 혼합물에 대한 고형 금지제의 억제 효과)

  • Hamdan, M. A.;Yamin, J. A.;Dabbas, R. K.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.295-299
    • /
    • 2010
  • An experimental rig was constructed in order to study the inhibitory effects of two thermal inhibitors namely; stone and calcium carbonate, on Liquefied Petroleum Gas -air flames. This was achieved by measuring the flammability limits of the combustible mixtures before and after the addition of these inhibitors. It was found that calcium carbonate has superior inhibitory effect on the combustible mixture under investigation while, Stone has a lower inhibitory effect than that of calcium carbonate.

A Study on the Characteristics of Smouldering Fire by Cigarette Fires (담뱃불에 의한 훈소화재 특성에 관한 연구)

  • Hwang, T.Y.;Lee, C.W.;Choi, D.M.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.111-126
    • /
    • 2007
  • In this study, we drew identification techniques of cigarette fires through the cases analyses of the combustion characteristics, the combustion time, the combustion temperature, the combustion test of smoldering materials and the reappearance experiments of cigarette fires. To initiate fires by cigarette fire, the conditions of oxygen supply, combustible materials must be satisfied. On the other hand, fires were not spreaded easily under the insufficient combustion conditions.

  • PDF

A Study on the Fire Safety Design and Predicting Fire Behavior Using Compartment Fire Test (단일화재실험을 통한 화재성상예측 및 건축구조물의 화재안전 설계에 관한 연구)

  • Yoon, Ung-Gi;Seo, Dong-Goo;Kim, Dong-Eun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.107-108
    • /
    • 2013
  • In this study, combustibles investigation and fire growth rate experiment were performed for predicting initial fire behavior in buildings. Combustibles investigation was performed for residential buildings, which is most frequently affected by fire in Korea. Spatial characteristics and combustibles properties were separately investigated, and occupied area and layout characteristics of combustibles were identified to produce general layout models. Of the layout models, room was selected for fire test of a single compartment. From this test, fire propagation for each combustible was identified, which was delayed compared to the summed heat release rate of a single combustible.

  • PDF

A Study on Experimental Characteristics in Fire Investigation Techniques of Flammable Liquids (유류화재의 감식기법의 실험적 특성에 관한 연구)

  • Hwang, Taeyeon;Choi, Donmook
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.7-14
    • /
    • 2012
  • This paper is to develop analytical techniques of flammable liquids which have been used for accelerating fire in accidental fires and arsons. We tested the temperature distribution of ceiling, fire patterns on the floor, and existence of flammable liquids and a check with GC/MS about flammable liquids comparing with papers, newspapers, and clothing. Research findings are as follows. The temperature of ceiling is influenced by flame. So gasoline and thinner was observed that combustible materials would be burned by flame. The fire patten on the floor was observed that flammable liquids had specialized pattern comparing combustible materials. When combustible materials on the PVC (Polyvinyl chloride) floor was burned, they didn't react to the gas detector. But flammable liquids had opposite results. After 7 days, we identified components of fire residues with the GC/MS (Gas Chromatography/Mass Spectrometry) about existence of flammable liquids and got components of flammable liquids. Fire investigation is a complicated processes. But we understand characteristics of materials, need detail investigations, and use the GC/MS to analyse flammable materials.

Numerical Investigation of Deformation of Thin-walled Tube Under Detonation of Combustible Gas Mixture (가연성 연소 가스의 데토네이션에 의한 얇은 관 변형 모델링)

  • Gwak, Mincheol;Lee, Younghun;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • We present the results of a multi-material numerical investigation of the propagation of a combustible gas mixture detonation in narrow metal tubes. We use an experimentally tuned one step Arrhenius chemical reaction and ideal gas equation of state (EOS) to describe stoichiometric $H_2-O_2$ and $C_2H_4-O_2$ detonations. The purely plastic deformations of copper and steel tubes are modeled using the Mie-Gruneisen EOS and Johnson-Cook strength model. To precisely track the interface motion between the detonating gas and the deforming wall, we use the hybrid particle level-sets within the ghost fluid framework. The calculated results are validated against the experimental data because the results explain the process of the generation and subsequent interaction of the expansion wave with the high-strain-rate deformation of the walls.

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

Effect of Oxidizing Agents on the Burning Characteristics of Smoke Rod of Pesticides Using Rice Chaff as a Combustible Carrier (왕겨를 가연성 담체로 하는 봉상 농약 훈연제의 연소성에 미치는 산화제의 영향)

  • Lim, He-Kyoung;Kim, Yong-Whan;Cho, Kwang-Yun;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.332-338
    • /
    • 2004
  • An investigation in search of the best oxidizing agent for smoke generators using rice chaff as a combustible carrier was carried out. Smoke rods formulated with active ingredients (AIs) such as inorganic oxidizing agents, glue, and powdered rice chaff, showed constant and high burning rate and high smoking rate on 11 kinds of pesticides. Sodium chlorate was the most suitable oxidizing agent for smoke rod. Even though the sodium chlorate content of the formulation showing the highest smoking rate of AI was variable to pesticides, the smoking rate appeared to increase as the burning rate increased. Active ingredients in smoke generator using rice chaff as a combustible carrier were stable for 60 days when stored at $50^{\circ}C$. An apparatus designed for smoke trapping was useful to collect smoked active ingredients.

Experimental study on the combustion characteristics of titanium alloy (티타늄 합금 폐기물의 연소 특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • Most titanium alloy waste with cutting oil was discarded without recycling process so that it can be caused by metal and oil fires. However, there is no fire management system and studies on the titanium or titanium alloy waste in spite of high fire risk. The purpose of this experimental study is to identify the fire risk of the titanium alloy waste with cutting oil. We collected the 120g waste which was made in the biomedical titanium alloy cutting process. The waste was burned and conducted thermal image analysis with infrared camera. The experimental results which illustrated the process, characteristics, and trends of fire are presented. Firstly, the cutting oil was burned and partially the titanium alloy waste was burned. The maximum temperature of the fire was more than $650^{\circ}C$ in some specific spots. These results means when a lot of titanium alloy waste with cutting oil was ignited, this fire could connect the titanium fire. In other words, the fire has a flammable liquid fire and combustible metal fire at the same time. The experimental study could be used fire prevention, response, and investigation of the titanium alloy waste.

Experimental Study on the Combustion Characteristics of Magnesium using Infrared Thermography and FE-SEM (적외선 열화상법 및 FE-SEM을 활용한 마그네슘 연소특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.927-934
    • /
    • 2020
  • Magnesium powder has been widely used in various industries because it is light weight and extremely high mechanical strength including aeronautics and chemicals. However, magnesium, as a combustible metal, poses serious safety issues such as fires and explosions if it is not managed properly. Especially, magnesium's max adiabatic flame temperature is 3,340℃ and it is impossible to extinguish it by using water, CO2 and Halonagents. The aim of this study is to identify the combustion characteristics of magnesium powder. We carried out a combustion experiment, using 1 kg of magnesium (purity > 99 %, particle < 150 ㎛). The features of the magnesium burning process were scrutinized using infrared thermal image analysis. Also, a field-emission scanning electron microscope (FE-SEM) were used employed to analyze particulate composites and properties. It concludes the significant tendency of magnesium fire and light, combustion carbide's particle characteristics. This study contributes to make better prevention and response manners to magnesium fires, as well as fire investigation measures.