• Title/Summary/Keyword: combining forecasting

Search Result 73, Processing Time 0.025 seconds

Project Duration Estimation and Risk Analysis Using Intra-and Inter-Project Learning for Partially Repetitive Projects (부분적으로 반복되는 프로젝트를 위한 프로젝트 내$\cdot$외 학습을 이용한 프로젝트기간예측과 위험분석)

  • Cho, Sung-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.137-149
    • /
    • 2005
  • This study proposes a framework enhancing the accuracy of estimation for project duration by combining linear Bayesian updating scheme with the learning curve effect. Activities in a particular project might share resources in various forms and might be affected by risk factors such as weather Statistical dependence stemming from such resource or risk sharing might help us learn about the duration of upcoming activities in the Bayesian model. We illustrate, using a Monte Carlo simulation, that for partially repetitive projects a higher degree of statistical dependence among activity duration results in more variation in estimating the project duration in total, although more accurate forecasting Is achievable for the duration of an individual activity.

Electric Energy Forecasting and Development of Load Curve Based on the Load Pattern (전력량 예측 및 부하 패턴을 근거로 한 부하 곡선 예측)

  • Ji, P.S.;Cho, S.H.;Lee, J.P.;Nam, S.C.;Lim, J.Y.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.163-165
    • /
    • 1996
  • In this paper, we are proposed development of electric energy method and load curve. A daily electric energy is forecasted using artificial neural network. The load curve is obtained by combining forecasted electric energy and typical daily load patterns which are classified using KSOM and Fuzzy system. As a result, we know that we could get more accurate results and easier application than the results from based on the hourly historical data.

  • PDF

On the drifting characteristics of a distressed ship (조난선박의 표류거동에 관한 연구)

  • 김창제;채양범;김길수;정태권;강성진
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 1996
  • A vessel in distress might be well identified when both the variables affecting the drifting of the vessel and the extent to which the variables affect the drifted vessel are known. And also the disembarking place inside the ship might be easily located if the drifting poised is forecasted. The forecasting method of the drifting poise is resolved by combining the vectors of the current and the wind. It is, however, very hard to forecast the effect of the wind, which should be mainly determined by field survey. This study aims at identifying the drifting characteristics of medium/large ships, considering only the effect of the wind. The experiment revealed the following results. $\circled1$ The drifting poise is determined by the aspect ratio of the ship and the shape of the superstructure of the ship. $\circled2$ Drifting direction is quite stable when wind speed goes over a certain level. $\circled3$ Drifting speed is 3-7% of the wind speed in case of T/S Hannara.

  • PDF

Forecasting Energy Consumption of Steel Industry Using Regression Model (회귀 모델을 활용한 철강 기업의 에너지 소비 예측)

  • Sung-Ho KANG;Hyun-Ki KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.2
    • /
    • pp.21-25
    • /
    • 2023
  • The purpose of this study was to compare the performance using multiple regression models to predict the energy consumption of steel industry. Specific independent variables were selected in consideration of correlation among various attributes such as CO2 concentration, NSM, Week Status, Day of week, and Load Type, and preprocessing was performed to solve the multicollinearity problem. In data preprocessing, we evaluated linear and nonlinear relationships between each attribute through correlation analysis. In particular, we decided to select variables with high correlation and include appropriate variables in the final model to prevent multicollinearity problems. Among the many regression models learned, Boosted Decision Tree Regression showed the best predictive performance. Ensemble learning in this model was able to effectively learn complex patterns while preventing overfitting by combining multiple decision trees. Consequently, these predictive models are expected to provide important information for improving energy efficiency and management decision-making at steel industry. In the future, we plan to improve the performance of the model by collecting more data and extending variables, and the application of the model considering interactions with external factors will also be considered.

Analysis of Impact of Hydrologic Data on Neuro-Fuzzy Technique Result (수문자료가 Neuro-Fuzzy 기법 결과에 미치는 영향 분석)

  • Ji, Jungwon;Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1413-1424
    • /
    • 2013
  • Recently, the frequency of severe storms increases in Korea. Severe storms occurring in a short time cause huge losses of both life and property. A considerable research has been performed for the flood control system development based on an accurate stream discharge prediction. A physical model is mainly used for flood forecasting and warning. Physical rainfall-runoff models used for the conventional flood forecasting process require extensive information and data, and include uncertainties which can possibly accumulate errors during modelling processes. ANFIS, a data driven model combining neural network and fuzzy technique, can decrease the amount of physical data required for the construction of a conventional physical models and easily construct and evaluate a flood forecasting model by utilizing only rainfall and water level data. A data driven model, however, has a disadvantage that it does not provide the mathematical and physical correlations between input and output data of the model. The characteristics of a data driven model according to functional options and input data such as the change of clustering radius and training data length used in the ANFIS model were analyzed in this study. In addition, the applicability of ANFIS was evaluated through comparison with the results of HEC-HMS which is widely used for rainfall-runoff model in Korea. The neuro-fuzzy technique was applied to a Cheongmicheon Basin in the South Han River using the observed precipitation and stream level data from 2007 to 2011.

Short Term Forecast Model for Solar Power Generation using RNN-LSTM (RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델)

  • Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2018
  • Since solar power generation is intermittent depending on weather conditions, it is necessary to predict the accurate generation amount of solar power to improve the efficiency and economical efficiency of solar power generation. This study proposes a short - term deep learning prediction model of solar power generation using meteorological data from Mokpo meteorological agency and generation data of Yeongam solar power plant. The meteorological agency forecasts weather factors such as temperature, precipitation, wind direction, wind speed, humidity, and cloudiness for three days. However, sunshine and solar radiation, the most important meteorological factors for forecasting solar power generation, are not predicted. The proposed model predicts solar radiation and solar radiation using forecast meteorological factors. The power generation was also forecasted by adding the forecasted solar and solar factors to the meteorological factors. The forecasted power generation of the proposed model is that the average RMSE and MAE of DNN are 0.177 and 0.095, and RNN is 0.116 and 0.067. Also, LSTM is the best result of 0.100 and 0.054. It is expected that this study will lead to better prediction results by combining various input.

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia (동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향)

  • Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

Hydraulic Model for Real Time Forecasting of Inundation Risk (실시간 범람위험도 예측을 위한 수리학적 모형의 개발)

  • Han, Geon-Yeon;Son, In-Ho;Lee, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.331-340
    • /
    • 2000
  • This study aims to develop a methodology of real time forecasting of mundation risk based on DAMBRK model and Kalman filter. The model is based on implicit, nonlinear finite difference approximatIons of the one-dimensional dynamic wave equations. The stochastic estimator uses on extended Kalman filter to provide optimal updating estimates. These are accomplished by combining the predictions of the determurustic model with real time observauons modified by the Kalman filter gain ractor. Inundation risks are also estimated by applying Monte Carlo simulation to consider the variability in cross section geometry and Manning's roughness coefficient. The model calibrated by applying to the floods ot South Han River on September, 1990 and August, 1995. The Kalman tilter model indicates that significant improvement compared to deteriministic analysis in flood routing predictions in the river. Overtopping risk of levee is also presented by comparing levee height with simulated flood level. level.

  • PDF

An Empirical Analysis of Sino-Russia Foreign Trade Turnover Time Series: Based on EMD-LSTM Model

  • GUO, Jian;WU, Kai Kun;YE, Lyu;CHENG, Shi Chao;LIU, Wen Jing;YANG, Jing Ying
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.159-168
    • /
    • 2022
  • The time series of foreign trade turnover is complex and variable and contains linear and nonlinear information. This paper proposes preprocessing the dataset by the EMD algorithm and combining the linear prediction advantage of the SARIMA model with the nonlinear prediction advantage of the EMD-LSTM model to construct the SARIMA-EMD-LSTM hybrid model by the weight assignment method. The forecast performance of the single models is compared with that of the hybrid models by using MAPE and RMSE metrics. Furthermore, it is confirmed that the weight assignment approach can benefit from the hybrid models. The results show that the SARIMA model can capture the fluctuation pattern of the time series, but it cannot effectively predict the sudden drop in foreign trade turnover caused by special reasons and has the lowest accuracy in long-term forecasting. The EMD-LSTM model successfully resolves the hysteresis phenomenon and has the highest forecast accuracy of all models, with a MAPE of 7.4304%. Therefore, it can be effectively used to forecast the Sino-Russia foreign trade turnover time series post-epidemic. Hybrid models cannot take advantage of SARIMA linear and LSTM nonlinear forecasting, so weight assignment is not the best method to construct hybrid models.

Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)

  • Heo, Junyoung;Yang, Jin Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.