• Title/Summary/Keyword: combined system

Search Result 5,676, Processing Time 0.041 seconds

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System (에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

Development of combined generation systems that power storage apparatus is applied (동력저장장치가 적용된 복합발전시스템의 개발)

  • Lee, Jeong-Il;Seo, Jang-Soo;Kang, Byung-Bog;Cha, In-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • The developments of the solar and the wind power energy are neccessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

Development and Combined test of Traction system for the Korean High Speed Train (한국고속전철용 주전력변환장치 개발 및 조합시험)

  • 노애숙;정은성;황광철;최종묵;류홍제;김용주
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1013-1018
    • /
    • 2002
  • This paper introduces the combined test results of the traction system for Korean High Speed Train. The main purpose of this combined test is to verify the performance of the traction system that is designed to operate up to Maximum 350Km/h speed. Various kinds of experiments are performed to prove total traction system performance and detailed waveforms are described.

  • PDF

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Comparison of Characteristics of Nonpoint Source Pollution from Separate and Combined Sewer System (합류식 월류수와 분류식 우수유출수의 비점오염물질 유출특성 비교)

  • Shin, Min Hwan;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.97-106
    • /
    • 2017
  • In this study, the characteristics of nonpoint source pollutant loads from separate sewer overflow (SSO) and combined sewer overflow (CSO) were evaluated during 2016 in Namyangju city, Korea. Five rainfall events were monitored during 2016 with ranging from 14.5 mm to 121.5 mm. The runoff ratio of CSO was higher than that of SSO because only design volume of maximum sanitary sewer ($1Q_h$) was transported and treated and $2Q_h$ was overflowed to waterbody during rainy day although combined sewer system was designed to transport $3Q_h$ to treatment system. The event mean concentrations (EMCs) and pollutant loads from CSO were higher than those from SSO. BOD and COD of CSO, and TOC and TN of SSO represented distinct first flush phenomena. The inadequate management in combined sewer system from which the untreated $2Q_h$ from CSO was overflowed to waterbody during rainy day could influence on high pollutant loads and first flushing. Treating $2Q_h$ from CSO, source control such as low impact development, and treating outflow from SSO were strongly recommended to control non-point source pollution in urban area.

Behavior of a combined piled raft foundation in a multi-layered soil subjected to vertical loading

  • Bandyopadhyay, Srijit;Sengupta, Aniruddha;Parulekar, Y.M.
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.379-390
    • /
    • 2020
  • The behavior of a piled raft system in multi-layered soil subjected to vertical loading has been studied numerically using 3D finite element analysis. Initially, the 3D finite element model has been validated by analytically simulating the field experiments conducted on vertically loaded instrumented piled raft. Subsequently, a comprehensive parametric study has been conducted to assess the performance of a combined piled raft system in terms of optimum pile spacing and settlement of raft and piles, in multi-layered soil stratum subjected to vertical loading. It has been found that a combined pile raft system can significantly reduce the total settlement as well as the differential settlement of the raft in comparison to the raft alone. Two different arrangements below the piled raft with the same pile numbers show a significant amount of increase of load transfer of piled raft system, which is in line with the load transfer mechanism of a piled raft. A methodology for the factor of safety assessment of a combined pile raft foundation has been presented to improve the performance of piled raft based on its serviceability requirements. The findings of this study could be used as guidelines for achieving economical design for combined piled raft systems.

A Combined Bulk Electric System Reliability Framework Using Adequacy and Static Security Indices

  • Billinton, Roy;Wangdee, Wijarn
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.414-422
    • /
    • 2006
  • Deterministic techniques have been applied in power system planning for many years and there is a growing interest in combining these techniques with probabilistic considerations to assess the increased system stress due to the restructured electricity environment. The overall reliability framework proposed in this paper incorporates the deterministic N-1 criterion in a probabilistic framework, and results in the joint inclusion of both adequacy and security considerations in system planning. The combined framework is achieved using system well-being analysis and traditional adequacy assessment. System well-being analysis is used to quantify the degree of N-1 security and N-1 insecurity in terms of probabilities and frequencies. Traditional adequacy assessment is Incorporated to quantify the magnitude of the severity and consequences associated with system failure. The concepts are illustrated by application to two test systems. The results based on the overall reliability analysis framework indicate that adequacy indices are adversely affected by a generation deficient environment and security indices are adversely affected by a transmission deficient environment. The combined adequacy and security framework presented in this paper can assist system planners to realize the overall benefits associated with system modifications based on the degree of adequacy and security, and therefore facilitate the decision making process.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

Structure-Control Combined Optimal Design with S/A Collocation (센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF