• Title/Summary/Keyword: combined loads

Search Result 485, Processing Time 0.029 seconds

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Post-Buckling of Shear Deformable Uniform Columns Under a Combined Load (조합하중을 받는 전단변형 기둥의 좌굴 후 거동 해석)

  • Yoo, Yeong Chan;Shin, Young Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.313-320
    • /
    • 2003
  • The governing equation of the post-buckling of shear-deformable uniform columns under a combined load consisting of a uniformly distributed axial load and a concentrated load at a free end was derived and the post-buckling analysis was investigated by using differential transformation. The loads were obtained for various end-slopes. The results obtained by the present method agree well with published results. In this paper, the differential transformation method was illustrated through its application to the non-linear differential equation of the post-buckling. It is expected that applications of the method to more challenging problems will are expected follow in future to ensue.

Analyzed Model of The Active Filter combined with SMES

  • Kim A-Rong;Kim Jae-Ho;Kim Hae-Jong;Kim Seok-Ho;Seong Ki-Chul;Park Min-Won;Yu In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.20-24
    • /
    • 2006
  • Recently, utility network is becoming more and more complicated and huge due to IT and OA devices. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, because of the non-linear power semiconductor devices, current harmonics are unavoidable. Sometimes those current harmonics flow back to utility network and become one of the main reasons which can make the voltage distortion. Also, it makes noise and heat loss. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(active filter) systems could be a good solution method. SMES is a very good promising source due to it's high response time of charge and discharge. Therefore, the combined AF and SMES system can be a wonderful device to compensate both harmonics current and voltage sag. However, SMES needs a superconducting magnetic coil. Because of using this superconducting magnetic coil, quench problem caused by unexpected reasons have always been unavoidable. Therefore, to solve out mentioned above, this paper presents a decisive method using shunt and series active filter system combined with SMES. Especially, authors analyzed the change of original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil.

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

Approximate System Reliability Analysis Under Multiple Time Varying Loads (복합 하중하에서의 구조물 체계 신뢰도 해석)

  • 김상효
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.101-109
    • /
    • 1988
  • The evaluation of the system reliability is generally quite difficult and costly as the structure becomes large and complex, especially when it is subjected to multiple time varying loads, and for redundant structures which have many possible modes of failur, e.g., system collapse through the formation of plastic hinge mechanisms. In reality most loadings acting on the structures are random in intensity as well as in occurrence time and duration. To include the load variability in time, the loads are described in terms of stochastic processes. Based on a tri-modal upper bound, a point estimate for the system reliability has been developed for more accuracy without extensive computational effort. This tri-modal point estimate also ensures the continuity of the system reliability function, which is a necessary condition in many nonlinear programming techniques. In addition, the Load Coincidence method, by which the combined effect of time varying loads are taken into account, has been modified to suitable for cases with an always-on load.

  • PDF

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Development of Estimation Equations for Solid Deposition in Sewer Systems due to Rainfall (강우로 인한 관거 내 고형물 퇴적량 산정식 개발)

  • Lee, Jae-Soo;Lee, Se-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.885-894
    • /
    • 2008
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimations of solid loads on land surface in a drainage basin and solid deposition in sewer system due to rainfall are needed but these tasks are very difficult and very expensive. In this study, procedures for estimating solid loads on surface in a drainage basin were applied and analyzed in Gunja drainage basin in Korea. Also, this paper presents the development and application of estimation equation for solid deposition in sewer system due to rainfall based on the solid deposition estimated using MOUSE model. As results, the comparison between estimated and measured solid deposition is difficult due to the absent of measured data, but the estimated values using developed equations show applicability compared with the results of MOUSE model and the application of the other basin. The developed estimation equations can be used usefully for the management of combined sewer system.

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank System with Damping Safety Structures (댐핑안전 구조물을 고려한 완전밀페식 LNG 저장탱크 시스템의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the finite element analysis on the strength safety of a full containment LNG storage tank system with damping safety structures. For the FEM analysis of the inner tank, the combined loads in which are related to a hydrostatic pressure, a cryogenic temperature load, BOG pressure, LNG weight, and a sinking force at the comer of the inner tank have been applied to the inner tank structure. The FEM computed results show that the conventional inner tank is safe for the given combined loads, but the damping safety structure such as compressive springs may be more useful structures to increase the safety of the tank system. The increased stiffness and the appropriate position of the springs are very important design parameters for increasing the damping strength safety of the tank system.

  • PDF