• Title/Summary/Keyword: combined heat and power

Search Result 324, Processing Time 0.028 seconds

Numerical Evaluation of the Cooling Performance of a Core Catcher Test Facility

  • Lee, Dong Hun;Park, Ik Kyu;Yoon, Han Young;Ha, Kwang Soon;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • A core catcher is considered as a promising engineered system to stabilize the molten corium in the containment during a postulated severe accident in a nuclear power plant. Conceptually, the core catcher consists of a carbon steel body, sacrificial material, protection material, and engineered cooling channel. The cooling capacity of the engineered cooling channel should be guaranteed to remove the decay heat of the molten corium. The flow in ex-vessel core catcher is a combined problem of a two-phase flow in the engineered cooling channel and a single-phase natural circulation in the whole core catcher system. In this study, the analysis of the test facility for the core catcher using the CUPID code, which is a three-dimensional thermal-hydraulic code for the simulation of two-phase flows, was carried out to evaluate its cooling capacity.

Effect of Flocculant Injection Ratio in NIR (Near-Infrared Ray) Drying for BIO-SRF (Solid Recovered Fuel) of Swage Sludge (하수슬러지 BIO-SRF (Solid Recovered Fuel) 생산을 위한 NIR (Near Infrared Ray) 건조시 응집제 주입비율이 미치는 영향)

  • Lee, Kang-min;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • This study executed evaluation of drying characteristics based on the polymer injection rate (8%, 10% and 12%) and the drying method[NIF(near-infrared ray). According to this study analyzed VS, VS/TS, and calorific value compared with 'the auxiliary fuel standard of the thermoelectric power plant and the combined heat & power plant'. The results are as follows. In the case of NIR, the VS was slightly changed at the early stage of the material preheating period and the constant drying rate period with low moisture evaporation. But VS reduction was shown higher as moisture was dried. In the case of non-digested sludge with high VS content, the VS reduction rate by drying was shown lower than that of digested sludge. As the flocculant injection rate increased, the VS loss due th drying was found to be small. Also, the higher the flocculant injection rate was the longer the drying time. Especially, in the case of the NIR drying equipment, as the moisture content of sewage sludge decreased(moisture content 20~40%), the loss of net VS also showed a tendency to increase sharply. It is shown that the high calorific value according to the drying time of the non-digested sludge was changed from 590 kcaℓ/kg to 3,005 kcaℓ/kg and from 539 kcaℓ/kg to 2,796 kcaℓ/kg.

Large-scale Virtual Power Plant Management Method Considering Variable and Sensitive Loads (가변 및 민감성 부하를 고려한 대단위 가상 발전소 운영 방법)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Lee, Yong-Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.225-234
    • /
    • 2015
  • Nowadays a Virtual Power Plant (VPP) represents an aggregation of distributed energy resource such as Distributed Generation (DG), Combined Heat and Power generation (CHP), Energy Storage Systems (ESS) and load in order to operate as a single power plant by using Information and Communication Technologies, ICT. The VPP has been developed and verified based on a single virtual plant platform which is connected with a number of various distributed energy resources. As the VPP's distributed energy resources increase, so does the number of data from distributed energy. Moreover, it is obviously inefficient in the aspects of technique and cost that a virtual plant platform operates in a centralized manner over widespread region. In this paper the concept of the large-scale VPP which can reduce a error probability of system's load and increase the robustness of data exchange among distributed energy resources will be proposed. In addition, it can directly control and supervise energy resource by making small size's virtual platform which can make a optimal resource scheduling to consider of variable and sensitive load in the large-scale VPP. It makes certain the result is verified by simulation.

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화 대응을 위한 발전소 온배수 활용 양식업 경제성 분석)

  • Lee, Sangsin;Kim, Shang Moon;Um, Gi Jeung
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • In order to resolve the problem of change in global climate which is worsening as days go by and to preemptively cope with strengthened restriction on carbon emission, the government enacted 'Framework Act on Low Carbon Green Growth' in 2010 and selected green technology and green industry as new national growth engines. For this reason, the necessity to use the un-utilized waste heat across the whole industrial system has become an issue, and studies on and applications of recycling in the agricultural and fishery fields such as cultivation of tropical crops and flatfishes by utilizing the waste heat and thermal effluent generated by large industrial complexes including power plants are being actively carried out. In this study, we looked into the domestic and overseas examples of having utilized waste heat abandoned in the form of power plant thermal effluent, and carried out economic efficiency evaluation of sturgeon aquaculture utilizing thermal effluent of Yeongwol LNG Combined Cycle Power Plant in Gangwon-do. In this analysis, we analyzed the economic efficiency of a model business plan divided into three steps, starting from a small scale in order to minimize the investment risk and financial burden, which is then gradually expanded. The business operation period was assumed to be 10 years (2012~2021), and the NVP (Net Present Value) and economic efficiency (B/C) for the operation period (10 years) were estimated for different loan size by dividing the size of external loan by stage into 80% and 40% based on the basic statistics secured through a site survey. Through the result of analysis, we can see that reducing the size of the external loan is an important factor in securing greater economic efficiency as, while the B/C is 1.79 in the case the external loan is 80% of the total investment, it is presumed to be improved to 1.81 when the loan is 40%. As the findings of this study showed that the economic efficiency of sturgeon aquaculture utilizing thermal effluent of power plant can be secured, it is presumed that regional development project items with high added value can be derived though this, and, in addition, this study will greatly contribute to reinforcement of the capability of local governments to cope with climate change.

  • PDF

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Trend on the Recycling Technologies for Waste Catalyst by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐촉매(廢觸媒) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Jin-Young;Pak, Jong-Jin;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.53-61
    • /
    • 2013
  • Since the 2000s, to start inducement of SCR(Selective Catalytic Reduction) denitrification facility by large scale companies which are emitted large amount of nitrogen oxides such as power plants, combined heat and power plant, incinerators and chemical plants due to take effect the regulation of stationary sources of nitrogen oxide(NOx), and the total amount of discharged pollutants, such as regulatory gradually emissions regulations are being strengthened and the expanded coverage due to the use of SCR denitrification catalyst is a growing trend. Since 2010 due to the new catalysts to replace the already installed power plants and incinerators due to inactive, and catalytic denitrification SCR waste catalyst waste as a resource rather than the development of technologies for recycling situation is urgently needed. In this study, analyzed paper and patent for recycling technologies of waste catalyst. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1975 to 2012. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.