• 제목/요약/키워드: combinatorial problem

검색결과 266건 처리시간 0.022초

A Secure and Efficient Cloud Resource Allocation Scheme with Trust Evaluation Mechanism Based on Combinatorial Double Auction

  • Xia, Yunhao;Hong, Hanshu;Lin, Guofeng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4197-4219
    • /
    • 2017
  • Cloud computing is a new service to provide dynamic, scalable virtual resource services via the Internet. Cloud market is available to multiple cloud computing resource providers and users communicate with each other and participate in market transactions. However, since cloud computing is facing with more and more security issues, how to complete the allocation process effectively and securely become a problem urgently to be solved. In this paper, we firstly analyze the cloud resource allocation problem and propose a mathematic model based on combinatorial double auction. Secondly, we introduce a trust evaluation mechanism into our model and combine genetic algorithm with simulated annealing algorithm to increase the efficiency and security of cloud service. Finally, by doing the overall simulation, we prove that our model is highly effective in the allocation of cloud resources.

Solution of quadratic assignment problem using parallel combinatorial variant of evolution strategy (병렬 CES를 이용한 QAP 해법)

  • Park, Lae-Jeong;Lee, Hyun;Park, Cheol-Hoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • 제34C권5호
    • /
    • pp.66-70
    • /
    • 1997
  • This paper presents a parallel combinatorial variant of evolution strategy (PCES) to solve well-known combinatorial optimization problems, Quadratic assignment problems (QAPs). The PCES reduces the possibility of getting stuck in local minima due to maintenance of subpopulation and thus it is more effective than the CES. Experiment results on two benchmark problems show that the PCES is better than the cES and the genetic algorithm(GA).

  • PDF

Designing New Algorithms Using Genetic Programming

  • Kim, Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.171-178
    • /
    • 2004
  • This study suggests a general paradigm enhancing genetic mutability. Mutability among heterogeneous members in a genetic population has been a major problem in application of genetic programming to diverse business problems. This suggested paradigm is implemented to developing new methods from existing methods. Within the evolutionary approach taken to designing new methods, a general representation scheme of the genetic programming framework, called a kernel, is introduced. The kernel is derived from the literature of algorithms and heuristics for combinatorial optimization problems. The commonality and differences among these methods have been identified and again combined by following the genetic inheritance merging them. The kernel was tested for selected methods in combinatorial optimization. It not only duplicates the methods in the literature, it also confirms that each of the possible solutions from the genetic mutation is in a valid form, a running program. This evolutionary method suggests diverse hybrid methods in the form of complete programs through evolutionary processes. It finally summarizes its findings from genetic simulation with insight.

  • PDF

A Study of Formation of Machine Cell-Part Family in FMS using the Simulated Annealing Algorithm (시뮬레이티드 어닐링 알고리즘을 이용한 유연생산시스템의 기계셀-부품군 형성에 관한 연구)

  • Kim, Jin-Yong;Park, Dae-Geuk;Oh, Byeong-Wan;Hong, Sung-Jo;Choi, Jin-Yeong
    • IE interfaces
    • /
    • 제10권2호
    • /
    • pp.1-13
    • /
    • 1997
  • The problem of the formation of machine-part cells in FMS is a very important issue at the planning and operating stages of FMS. This problem is inherently a combinatorial optimization problem, proven to be NP-complete(or, NP-hard). Among the several kinds of approaches which have been applied to solve the combinatorial optimization problems, the Simulated Annealing(SA) algorithm, a technique of random search type with a flexibility in generating alternatives, is a powerful problem solving tool. In this paper, the SA algorithm is used to solve machine cell-part family formation problems. The primary purpose of the study is to find the near-optimal solution of machine cell-part family formation problem, whare the product volume and number of operations are prespecified, that can minimize the total material handling cost caused by exceptional elements and intercell moves as much as possible. The results show that the SA algorithm is able to find a near-optimal solution for practical problems of the machine cell-part family formation.

  • PDF

Neighbor Generation Strategies of Local Search for Permutation-based Combinatorial Optimization

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • 제26권10호
    • /
    • pp.27-35
    • /
    • 2021
  • Local search has been used to solve various combinatorial optimization problems. One of the most important factors in local search is the method of generating a neighbor solution. In this paper, we propose neighbor generation strategies of local search for permutation-based combinatorial optimization, and compare the performance of each strategies targeting the traveling salesman problem. In this paper, we propose a total of 10 neighbor generation strategies. Basically, we propose 4 new strategies such as Rotation in addition to the 4 strategies such as Swap which have been widely used in the past. In addition, there are Combined1 and Combined2, which are made by combining basic neighbor generation strategies. The experiment was performed by applying the basic local search, but changing only the neighbor generation strategy. As a result of the experiment, it was confirmed that the performance difference is large according to the neighbor generation strategy, and also confirmed that the performance of Combined2 is the best. In addition, it was confirmed that Combined2 shows better performance than the existing local search methods.

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

Clustering by Accelerated Simulated Annealing

  • Yoon, Bok-Sik;Ree, Sang-Bok
    • Korean Management Science Review
    • /
    • 제15권2호
    • /
    • pp.153-159
    • /
    • 1998
  • Clustering or classification is a very fundamental task that may occur almost everywhere for the purpose of grouping. Optimal clustering is an example of very complicated combinatorial optimization problem and it is hard to develop a generally applicable optimal algorithm. In this paper we propose a general-purpose algorithm for the optimal clustering based on SA(simulated annealing). Among various iterative global optimization techniques imitating natural phenomena that have been proposed and utilized successfully for various combinatorial optimization problem, simulated annealing has its superiority because of its convergence property and simplicity. We first present a version of accelerated simulated annealing(ASA) and then we apply ASA to develop an efficient clustering algorithm. Application examples are also given.

  • PDF

Semidefinite Spectral Clustering (준정부호 스펙트럼의 군집화)

  • Kim, Jae-Hwan;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (A)
    • /
    • pp.892-894
    • /
    • 2005
  • Graph partitioning provides an important tool for data clustering, but is an NP-hard combinatorial optimization problem. Spectral clustering where the clustering is performed by the eigen-decomposition of an affinity matrix [1,2]. This is a popular way of solving the graph partitioning problem. On the other hand, semidefinite relaxation, is an alternative way of relaxing combinatorial optimization. issuing to a convex optimization[4]. In this paper we present a semidefinite programming (SDP) approach to graph equi-partitioning for clustering and then we use eigen-decomposition to obtain an optimal partition set. Therefore, the method is referred to as semidefinite spectral clustering (SSC). Numerical experiments with several artificial and real data sets, demonstrate the useful behavior of our SSC. compared to existing spectral clustering methods.

  • PDF

A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem

  • Liang, Yun-Chia;Wu, Chia-Chuan
    • Industrial Engineering and Management Systems
    • /
    • 제4권1호
    • /
    • pp.94-101
    • /
    • 2005
  • This paper presents the first known application of a meta-heuristic algorithm, variable neighbourhood descent (VND), to the redundancy allocation problem (RAP). The RAP, a well-known NP-hard problem, has been the subject of much prior work, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. The variable neighbourhood descent method has not yet been used in reliability design, yet it is a method that fits perfectly in those combinatorial problems with potential neighbourhood structures, as in the case of the RAP. A variable neighbourhood descent algorithm for the RAP is developed and tested on a set of well-known benchmark problems from the literature. Results on 33 test problems ranging from less to severely constrained conditions show that the variable neighbourhood descent method provides comparable solution quality at a very moderate computational cost in comparison with the best-known heuristics. Results also indicate that the VND method performs with little variability over random number seeds.

Network Enlarging Search Technique (NEST) for the Crew Scheduling Problem

  • Paek, Gwan-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제19권2호
    • /
    • pp.177-198
    • /
    • 1994
  • We consider an algorithm for the Crew Scheduling Problem (CSP) based on the Transportation Problem approach. The main flows of the algorithm are arranged in three steps. First we propose a heuristic algorithm of the greedy principle to obtain an initial feasible solution. Secondary we present a method of formulating CSP into a Modified Transportation Problem format. Lastly the procedures of network search to get the optimal solution are presented. This algorithm can be applied to the general GSP and also to most combinatorial problems like the Vehicle Routing Problems. The computational results show that the large size CSP's could be tackled.

  • PDF