• Title/Summary/Keyword: comb actuator

Search Result 24, Processing Time 0.034 seconds

Comb actuator design methodology for variable optical attenuator(VOA) application (Variable optical attenuator(VOA) 응용을 위한 comb actuator 설계 방법)

  • Kim, Sang-Bum;Han, Seung-Oh;Oh, Sang-Woo;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.306-308
    • /
    • 2003
  • 본 논문은 variable optical attenuator(VOA)에 응용하기 위한 comb actuator를 설정하기 위해, 요구되는 조건에 가장 적합한 comb actuator를 설계하기 위한 방법을 제시한다. VOA 응용을 위한 comb actuator 설계에서 고려되어야 하는 조건들은 comb actuator의 performance(변위, 공진 주파수), 구동 전압 그리고 공정의 한계(최소 선폭, 최소 간격, 두께) 등이다. 이러한 조건들이 정해지면, 이 조건들을 comb actuator의 구동력과 지지빔 스프링에 의한 복원력에 대입하여 두 힘이 평형일 때의 조건으로부터 comb finger의 수와 구동부의 질량 및 지지빔의 길이 등의 선계 변수들을 정할 수 있다. 그리고 comb actuator의 질량으로 부터 구동부의 면적을 구할 수 있고, 이러한 조건에서 구한 지지빔의 면적과 비교하여 적절한 구동부의 면적을 설정한다. 이상의 내용을 조합해서 요구된 조건이 comb actuator 설계에 적합한지의 여부를 확인했고, VOA 응용을 위한 요구 조건에 맞는 comb actuator 설계를 했다.

  • PDF

A HIGH-ASPECT-RADIO COME ACTUATOR USING UV-LIGA SURFACE MICROMACHINING AND (110) SILICON BULK MICORMACHINING (UV-LIGA 표면 미세 가공 기술과 (110) 실리콘 몸체 미세 가공 기술을 이용한 큰 종횡비의 빗모양 구동기 제작에 관한 연구)

  • Kim, Seong-Hyeok;Lee, Sang-Hun;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.132-139
    • /
    • 2000
  • This paper reports a novel micromachining process based on UV-LIGA process and (110) silicon anisotropic etching for fabrication of a high-aspect-ratio comb actuator. The comb electrodes are fabricated by (110) SILICON comb structure considering the etch-rate-ratio between (110) and (111) planes and lateral etch rate of a beam-type structure. The fabricated structure was$ 400\mum \; thick\; and\; 18\mum$ wide comb electrodes separated by $7\mim$ so that the height-gap ratio was about 57. Also considering resonant frequency of the comb actuator and the frequency-matching between sensing and driving mode for gyroscope application, we designed the number, width, height and length of the spring structures. Electroplated gold springs on both sides of the seismic mass were $15\mum\; wide,\; 14\mum\; thick\; and \; 500\mum$ long. The fabricated comb actuator had resonant frequency ay 1430Hz, which was calculated to be 1441Hz. The proposed fabrication process can be applicable to the fabrication of a high-aspect-ratio comb actuator for a large displacement actuator and precision sensors. Moreover, this combined process enables to fabricate a more complex structure which cannot be fabricate only by surface or bulk micromachining.

  • PDF

Development of a Comb-parallel Type Micro Actuator with High Aspect Ratio (높은 세장비의 Comb-parallel 타입 마이크로 액츄에이터의 개발)

  • 이승재;조동우;김종영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.848-853
    • /
    • 2001
  • Electrostatic actuation was adopted for ease of fabrication. We proposed a new driving scheme that uses the vector sum of force generated by comb-finger and by parallel plate. The moving and fixed electrodes are arranged to maximize the driving force. In this paper, an electrostatic field analysis is performed by Maxwell analysis tool for micro actuators. From the analysis, a comb-parallel type micro-actuator with 4${\mu}{\textrm}{m}$ width, 6${\mu}{\textrm}{m}$ overlap and 45${\mu}{\textrm}{m}$ height could be designed. In order to compare the new type of actuator with the conventional comb type of actuator, we arranged that both types have the same area and the same number of actuators. To make a high aspect ratio structure, we are developing fabrication process using SU-8 and electro-plating.

  • PDF

Sawtooth Fingered Comb Drive Actuator for Greater Displacement

  • Ha Sang Wook;Oh Sang-Woo;Hahm Ju-Hee;Kim Kwon Hee;Pak James Jungho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.264-269
    • /
    • 2005
  • The electrostatic comb drive actuator is one of the main building blocks in the field of micro electro-mechanical systems (MEMS). Most of the comb actuators presented previously have fingers that are rectangular in shape which produce a stable, constant force output during actuation. The use of sawtooth fixed fingers in a comb drive, which were presumed to produce an increasing force output with displacement due to the increased number of regions where fringing force, the driving force of comb actuators, appear. The dimensions of the sawtooth were derived from finite element analysis (FEA) of simplified finger models with sawtooth type fingers of various dimension and were compared to the rectangular finger model that showed that the sawtooth type fingers have $7\~9$ times stronger driving force. Finally, comb drive actuators with sawtooth type and rectangular fingers were fabricated and although the gap was bigger, the comb actuator with sawtooth type fingers showed about 1.7 times greater electrostatic force than the one with rectangular fingers at equal driving voltages. In conclusion, using the proposed sawtooth type comb fingers in a comb drive makes it possible to increase its displacement or reduce the driving voltage.

Fabrication of Electrostatically Driven Comb Actuator Using (110) Oriented Si Anisotropic Etching ((110) 실리콘의 이방성 식각을 이용한 빗 모양 액츄에이터의 제작)

  • Lim, Hyung-Taek;Lee, Sang-Hun;Kim, Seong-Hyok;Kim, Yong-Kweon;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1974-1976
    • /
    • 1996
  • An electrostatically driven comb actuator with $525{\mu}m$ height was fabricated using (110) Si anisotropic etching in the Potassium Hydroxide(KOH) solution. The etch-rate and etch-rate ratio are strongly dependent on the weight % and temperature of KOH solution. We developed the optimal condition for the anisotropic etching on (110) wafer with varying these conditions. The force that the comb-drive actuator generates is inversely proportional to the distance of gap and proportional to the height of the comb electrodes. The electrodes must have the high aspect ratio. The (110) Si anisotropic etching is very useful to get a high aspect ratio structure.

  • PDF

Design and Fabrication of Movable Micro-Fersnel Lens on XY-stage (XY-Stage에 의해 정적인 변위를 갖는 미세 프레넬 렌즈(Micro-Fresnel Lens)의 설계 및 제작)

  • Kim, Che-Heung;Ahn, Si-Hong;Lim, Hyung-Taek;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2515-2517
    • /
    • 1998
  • The micro fresnel lens(MFL) was modeled and fabricated on a XY-stage electrostatically driven by comb actuator. The modeled MFL was approximated as a step shape with 4-phase and 4-zone plate. The focal length and diameter of the MFL is 20mm and 912${\mu}m$, respectively. The XY-stage suspending the MFL is designed to generate a large static displacement up to about 20${\mu}m$. On SOI substrates, we first fabricated MFL using the RIE(reactive Ion etching) technology and then patterned and etched bulk silicon to make XY-stage. After the fabrication of all structures on top side of the SOI substrates. $Si_3N_4$ was deposited for passivation of all structures using PECVD(plasma enhanced chemical vapor deposition). All the MFL systems width comb drive actuator were released by KOH etching from the bottom side of the SOI wafer using double-sided alignment technique. In fabrication of MFL, a dry etching conditions is established in order to improve surface roughness and to control the etched depth.

  • PDF

Resonant Frequency Tuning of Torsional Microscanner using MEMS actuator (MEMS 구동기를 이용한 마이크로 주사거울의 고유주파수 튜닝)

  • Lee, Jae-Ik;Park, Sunwoo;Kim, Jongbaeg
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • In this paper, we present a novel approach for tuning the resonant frequency of torsionally driven vertical comb actuators. The tuning unit composed of thermal actuator, scissor mechanism and V-shape shaft enables continuous and reversible resonant frequency tuning. The proposed method is based on the stiffness alteration of the V-shape shaft. It is experimentally verified that the resonant frequency of the torsional microscanner is shifted up to 1.59 kHz from 1.51 kHz showing the maximum tuning ratio of 5.29%.

Operation Characteristic Analysis of a Comb Actuator due to a Anisotropy Variation in RIE Etching (RIE 식각시 발생하는 비등방도 변화에 따른 머리빗형 액튜에이터의 동작 특성 분석)

  • Kim, Bong-Soo;Park, Ho-Jun;Pak, Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.368-376
    • /
    • 1999
  • This paper predicts the changes in the spring constant, the resonant frequency, the electrostatic force, and the displacement of a resonant structure due to non-ideal anisotropic RIE etching process. First, a $6\;{\mu}m$ thick polysilicon was etched by RIE and the anisotropy of the etched structure was measured as a function of a RF power, a $Cl_2$ flow rate and a chamber pressure. In the experimental results, an anisotropy was decreased as the RF power, the $Cl_2$ flow rate, or the chamber pressure was increased. A comb actuator's operation characteristic was predicted depending on the anisotropy variations in RIE etching. Comb actuators with three different support beam structures were investigated : fixed-fixed, crab-leg, and double crab-leg. As the RIE etch anisotropy becomes non-ideal, i.e. the cross section becomes rather a trapezoidal than a rectangular shape, it decreases spring constant, resonant frequency and electrostatic force of a comb actuator but it increases the displacement of the mass. Among the three structures, the comb actuator with double crab-leg support beams is more influenced by anisotropy variation in RIE etch than other two.

  • PDF

Integration of a micro lens on a in-plane positioning actuator with 2-DOF (마이크로 렌즈가 집적된 2-자유도 평면구동기의 설계 및 제작)

  • Kim, Che-Heung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3322-3324
    • /
    • 1999
  • This paper studies on the design and fabrication of a micro in-plane positioning actuator integrated with a microlens. Proposed in-plane actuator is a micro XY-stage which is composed of two linear comb drive actuators being orthogonal to each other. In the fabrication of actuator, the single crystalline silicon substrate anodically bonded with a #7740 glass substrate is used because of simple release and passivation. The structure of actuator is formed on the silicon facet of bonded fixture by chlorine-based deep RIE and then released by isotropic wet etching of glass (#7740) in hydrofluoric acid solution. Fabricated actuator has a large travel range up to $30({\pm}15){\mu}m$ and high resolution less than 0.01f1l1l in each direction. Experimented resonant frequency of this actuator is 630Hz. The micro-Fresnel lens is fabricated on the square-shape glass structure prepared in the center of actuator.

  • PDF