• Title/Summary/Keyword: columnar joints

Search Result 29, Processing Time 0.028 seconds

EFFECT OF HEPATOCYTE GROWTH FACTOR ON THE REPAIR OF DEFECT IN THE ARTICULAR DISC IN RABBIT TEMPOROMANDIBULAR JOINT (가토의 측두하악관절원판 결손에서 간세포 성장인자가 치유에 미치는 영향)

  • Kim, Bok-Joo;Seong, Hwa-Sik;Kim, Chul-Hoon;Kim, Gyoo-Cheon;Hwang, Hee-Sung;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose of this study is to investigate the therapeutic use of Hepatocyte growth factor(Adv.CMV.HGF) in temporomandibular joint disc defect. Materials and methods: Twelve New Zealand white rabbits, weighing 2.5 - 3.0 kg, were used in this experiment. Defects(2 mm in diameter) were created in their TMJ discs. Recombinant Adv.CMV.HGF with gelatin sponge($Gelfoam^{(R)}$) as carrier was implanted in the defects. We divided the rabbits into four batches according to the duration of the implantation - of 1, 4, 8, 12 weeks - and both left and right TMJ of each rabbit in all groups were used in the research : left joints were used as experiment group and right were control group. Each batch of rabbits was killed one, four, eight and twelve weeks after the experimentation respectively, and called Group A, B, C, and D. (Group A = 1 wk, B = 4 wks, C = 8 wks, and D = 12 wks) Results: The experimental group showed a significant increase in the number of chondroblasts and active cell differentiation at the margin of the defects. Compared to the control group, in the experiment group chondroblasts increased and chondrocytes showed a columnar arrangement, which is witnessed at the time of cell differentiation. Conclusion: This study supports the case that Avd.CMV.HGF may be useful in the repair of articular disc of the rabbit TMJ.

A Study on the Geotechnical Characteristics of Jeju Area Using Field Tests (현장시험을 이용한 제주지역의 지질특성에 관한 연구)

  • Byung Jo Yoon;Sung Yun Park;Seung Jun Lee
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.769-777
    • /
    • 2022
  • Purpose: This study analyzes and studies the characteristics of the Jeju area and uses them as basic data such as construction method design in the future development project. Method: Based on the ground survey data of the construction conducted in Jeju, the depth, relative density, N value, function state, color tone, groundwater level, and compressive strength were analyzed and studied. Result: Studies show that Jeju has columnar joints consisting of ancient volcanic activity and rapid cooling by nearby seawater, thick sand layers found on the coast, and clinker layers and Seogwipo layers formed by Mercury volcanic activity. Conclusion: It is hoped that it will be used as data for selecting basic design and basic construction method by understanding the special ground form of Jeju area and reflecting its characteristics well when designing construction.

Geo-educational Value of Deokmyeong-ri area in Goseong-gun, Gyeongsangnamdo (경남 고성군 덕명리 일원의 지질 교육적 가치)

  • Kyeong-Jin Park;Jae Woo Lee;Dal-Yong, Kong;Yong Sik Gihm
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.611-628
    • /
    • 2023
  • This study aimed to explore the geo-educational value of Deokmyeong-ri in Goseong-gun, Gyeongsangnamdo, through field research. The study area comprises well-exposed outcrops, which can be used as field sites during field trip for studying sedimentary structures (normal grading bedding, cross bedding, ripple, and desiccation crack), coastal depositional environments (coastal cliff, shore platform, and gravel beach), basic principles of relative dating (unconformity, fault, intrusion, and xenolith), and columnar joints. This study evaluated the field sites based on the achievement standards and textbooks used in the science curriculum. The field sites have a high educational value because they exhibit typicality, as mentioned in the textbook, and provide study materials for enrichment learning. Furthermore, Deokmyeong-ri Area has well-developed tourist and educational infrastructures; thus, it is a safe place for geological education.

Discharge characteristics of the Seodo Mulgol Spring, Dokdo (독도 서도 물골 지하수의 유출특성)

  • Cho, Byong-Wook;Yun, Uk;Lee, Byeong-Dae;Song, Won-Kyong;Hwan, Jae-Hong;Choo, Chang-Oh
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • The discharge characteristics of the Seodo Mulgol Spring-the only groundwater-producing area in Dokdo-were evaluated by measurements of discharge rate and electrical conductivity (EC) on five occasions. The Seodo Mulgol Spring is fed by rainfall in upstream areas of the Mulgol cave, and the rainwater of the area moves down along cooling joints developed in trachyandesite II and trachyte, finally discharging at the Mulgol cave. The discharge rate of the Seodo Mulgol Spring varied from 1.12 to 7.02 $m^3/d$ during the study period and EC varied from 2,650 to 3,390 ${\mu}S/cm$, showing a sharp increase during heavy rainfall. The observed variations in discharge rate and EC at the Seodo Mulgol Spring are attributed to the relatively short distance between the recharge area and the Mulgol cave, and to the rapid movement of groundwater through columnar joints developed in trachyandesite II and trachyte. Additional discharge measurements, combined with precise rainfall data, are required at Dokdo to elucidate the discharge characteristics of the Seodo Mulgol Spring.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwon-do, Korea (강원도 고성 뒤배재 화산암의 암석화학적 특성)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.109-119
    • /
    • 2013
  • Duibaejae basalts from Goseong, Gangwon-do, are divided into the lower basalt and the upper basalt depending on the properties, such as occurrence, mineral compositions, and major and trace compositions of the basalts. The lower basalts have characteristics of agglomerate rocks as well as contain, crustal and mantle xenoliths, and olivine, pyroxene, and plagioclase xenocrysts. The upper basalts with columnar joints contain relatively more mantle xenolith and olivine xenocryst than the lower basalts. The major and trace element compositions suggest that the composition of the upper basalts is close to primary magma composition. Enrichment and depletion patterns of the trace and the rare-earth elements of the lower basalts are similar to those of the upper basalts, whereas the lower basalts are more LREE enriched than the upper basalts. The source magmas of the lower and upper basalts from Duibaejae volcanic edifice were generated from about 0.8-1.2% and 3.7-4.0% batch melting of garnet peridotite, respectively. The abundance of granite xenolith, and plagioclase and quartz xenocrysts with reaction rim indicates that the lower basalts, compared with upper basalts, might have been assimilated with the crustal materials during ascending to surface.

Quaternary Geology and Paleoecology of Hominid Occupation of Imjin Basin (임진강유역 구석기 공작의 고생태학적 배경)

  • Seonbok Yi
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.25-50
    • /
    • 1988
  • The survival of rich evidence of palaeolithic occupation found in the Imjin-Hant'an River basin was possible due to many fortuitous geological conditions provided there. Formation of the basalt plain in a narrow valley system which developed during the late Mesozoic insured the appearance of a basin of sedimentation in which archaeological sites would be preserved with relatively minor post-depositional disturbance. Geomagnetic and K-Ar dating indicates that lava flows occurred during the Brunes Normal Epoch. During and after the process of basin sedimentation, erosion of the plain was confined to the major channel of the present river system which developed along the structural joints formed by the lava flow. Due to characteristic columnar structure and platy cleavage of the basalt bedrock, erosion of the basalt bedrock occurred mainly in vertical direction, developing deep but narrow entrenched valleys cut into the bedrock. Consequently, the large portion of the site area remained intact. Cultural deposits formed on top of the basalt plain were left unmodified by later fluvial disturbances due to changes in the Hant'an River base-level, since they were formed about 20 to 40m above the modern floodplain. Sedimentological evidence of cultural deposits and palynological analysis of lacustrine bed formed in the tributary basin of the Hant'an River indicate that hominid occupation occurred in this basin under rapidly deteriorating climatic conditions. From three thermoluminescence dates, the timing of hominid occupation as represented by 'Acheulian-like' bifaces apparently occur sometime during 45,000 BP. Thus, deposition of cultural layers in this basin approximately coincides with the beginning of the second stadial of the final glacial, during which the Korean Peninsula must have had provided a sanctuary for prolonged human occupation.

  • PDF

Natural Monument Cretaceous Stromatolite at the Daegu Catholic University, Gyeongsan: Occurrences, Natural Heritage Values, and Plan for Preservation and Utilization (천연기념물 경산 대구가톨릭대학교 백악기 스트로마톨라이트: 산상, 자연유산적 가치 및 보존·활용 방안)

  • KONG Dal-Yong;LEE Seong-Joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.214-232
    • /
    • 2023
  • Stromatolite at the Daegu Catholic University, Gyeongsan was designated as a natural monument in December 2009 because it was very excellent in terms of rarity, accessibility, preservation and scale. From the time of designation, the necessity of confirming the lateral extension of the stromatolite beds with the excavation of the surrounding area, and preparing a preservation plan was raised. Accordingly, the Cultural Heritage Administration conducted an investigation of the scale, production pattern, and weathering state of stromatolites with an excavation from April to December 2022, and based on this, suggested natural heritage values and conservation and use plans. The excavation was carried out in a 1,186m2 area surrounding the exposed hemispherical stromatolite (approximately 30m2). Stromatolites are continuously distributed over the entire excavation area, and hemispherical stromatolites predominate in the eastern region, and the distribution and size of hemispherical domes tend to decrease toward the west. These characteristics are interpreted as a result of long-term growth in large-scale lakes, where stratiform or small columnar domes continued to grow and connect with each other, finally forming large domes. Consequently, large and small domes were distributed on the bedding plane in clusters like coral reefs. The growth of plants and lichens, as well as small-scale faults and joints developed on the stromatolite bedding surface, is the main cause of accelerated weathering. However, preservation treatment with chemicals as with dinosaur footprints or dinosaur egg fossil sites is not suitable due to the characteristics of stromatolites, and preservation with the installation of closed protection facilities should be considered. This excavation confirmed that the distribution, size and value of stromatolites are much larger and higher than at the time of designation as a natural monument. Therefore, additional excavation of areas by experts that could not be excavated due to the discovery of buried cultural properties (stone chamber tombs) and reexamination of the expansion designation of natural monuments are required.