• 제목/요약/키워드: column-column connection

검색결과 725건 처리시간 0.025초

Parametrical study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling

  • Silva, Matheus F.A.;Haach, Vladimir G.
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.215-233
    • /
    • 2016
  • Exterior beam-column joints are structural elements that ensure connection between beams and columns. The joint strength is generally assumed to be governed by the structural element of lowest load capacity (beam or column), however, the joint may be the weakest link. The joint shear behavior is still not well understood due to the influence of several variables, such as geometry of the connection, stress level in the column, concrete strength and longitudinal beam reinforcement. A parametrical study based only on experiments would be impracticable and not necessarily exposes the failure mechanisms. This paper reports on a set of numerical simulations conducted in DIANA$^{(R)}$ software for the investigation of the shear strength of exterior joints. The geometry of the joints and stress level on the column are the variables evaluated. Results have led to empirical expressions that provide the shear strength of unreinforced exterior beam-column joints.

Shear transfer mechanism in connections involving concrete filled steel columns under shear forces

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.449-460
    • /
    • 2018
  • This paper reports the experimental results of three through bolt beam-column connections under pure shear forces using modified push-out tests. The investigated specimens include extended end-plates and six through-bolts connecting square concrete-filled steel tubular column (S-CFST) to steel beams. The main goal of this study is to investigate if and how the mechanical shear connectors, such as steel angles and stud bolts, contribute to the shear transfer mechanisms in the steel-concrete interface of the composite column. The contribution of shear studs and steel angles to improve the shear resistance of steel-concrete interface in through-bolt connections was investigated using tests. The results showed that their contribution is not significant when the beam-column connection is included in the push-out tests. The specimens failed by pure shear of the long bolts, and the ultimate load can be predicted using the shear resistance of the bolts under shear forces. The predicted values of load allowed obtaining a good agreement with the tests results.

Numerical analysis of the mechanical behavior of welded I beam-to-RHS column connections

  • Rosa, Rosicley J.R.;Neto, Juliano G.R.
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.185-197
    • /
    • 2019
  • Considering the increasing use of tubular profiles in civil construction, this paper highlights the study on the behavior of welded connections between square hollow section column and I-beam, with emphasis on the assessment of the joint stiffness. Firstly, a theoretical analysis of the welded joints has been done focusing on prescriptions of the technical literature for the types of geometries mentioned. Then, a numerical analysis of the proposed joints were performed by the finite element method (FEM) with the software ANSYS 16.0. In this study, two models were evaluated for different parameters, such as the thickness of the cross section of the column and the sizes of cross section of the beams. The first model describes a connection in which one beam is connected to the column in a unique bending plane, while the second model describes a connection of two beams to the column in two bending planes. From the numerical results, the bending moment-rotation ($M-{\varphi}$) curve was plotted in order to determine the resistant bending moment and classify each connection according to its rotational capacity. Furthermore, an equation was established with the aim of estimating the rotational stiffness of welded I beam-to-RHS column connections, which can be used during the structure design. The results show that most of the connections are semi-rigid, highlighting the importance of considering the stiffness of the connections in the structure design.

CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구 (An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column)

  • 박순규;노환근
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.789-799
    • /
    • 1998
  • 본 연구의 목적은 CFT-기둥과H-형강보의 볼트를 이용한 접합부의 형식을 제안하는 데 있다. 본 연구에서는 직선형, 굽힘형, U자형, 기성제품 고장력 볼트를 이용한 아홉가지 형식의 접합부를 제안하였다. 이 아홉가지의 접합부 형식에 대하여 단순 인장 실험을 수행하였으며, 이 실험 결과에 의해 성능이 우수한 형태를 선정하여 단순 휨 실험을 수행하였다. 그리고 단순 휨 실험을 통해 보-기둥 접합부의 구조적인 거동을 비교 분석하였다. 단순 휨 실험의 분석 결과, 휨 접합부의 구조성능은 상당히 우수한 것으로 나타났으나 시공시 해결되어야 할 사항들이 남아 있는 것으로 나타났다.

  • PDF

Structural characteristics of welded built-up square CFT column-to-beam connections with external diaphragms

  • Lee, Seong-Hui;Yang, Il-Seung;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.261-279
    • /
    • 2010
  • Generally, a box tube, which is used for an existing square CFT structure, is made by welding four plates. The manufacturing efficiency of this steel tube is poor, and it also needs special welding technology to weld its internal diaphragm and the through diaphragm. Therefore, an interior-anchor-type square steel tube was developed using the method of cold-forming thin plates to prevent welding of the stress concentration position, and to maximize the section efficiency. And, considering of the flow of beam flange load, the efficiency of erection and the weldability of the diaphragm to thin walled steel column, the external diaphragm connection was selected as the suitable type for the welded built-up square CFT column to beam connection. And, an analytical study and tests were conducted to evaluate the structural performance of the suggested connection details and to verify the suggested equations for the connection details. Through this study, the composite effect of the internal anchor to concrete, the resistance and stress distribution of the connections before and after the existing column is welded to the beam, the effective location of welding in connection were analyzed.

철근콘크리트 기둥과 철골보의 접합부 개발 및 지압성능에 관한 시험적 연구 (A Study on the Development and Test on Bearing Resistance of R/C Column-Steel Girder Connection)

  • 최광호;이세웅;김재순;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.515-520
    • /
    • 1997
  • This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column with smooth stress transfer. As the first step of the structural performance tests of the system, bearing resistance test has been carried out for actual size specimen. From the test, the connection system has been proved to take good bonding and stress transfer to the surrounding concrete with negligible relative displacements.

  • PDF

콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험 (Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns)

  • 이호준;박홍근;최인락
    • 한국강구조학회 논문집
    • /
    • 제29권6호
    • /
    • pp.411-422
    • /
    • 2017
  • 본 연구에서는 콘크리트피복 원형충전강관 기둥을 적용한 합성구조 접합부의 거동특성과 내진성능을 평가하기 위하여, 기둥-플랜지 접합부에 대한 인장실험과 보-기둥 접합부에 대한 반복하중 실험을 수행하였다. 기둥-플랜지 인장실험은 피복콘크리트의 유무와 플랜지 폭, 인장철근 보강을 변수로 하여 5개의 실험체에 대하여 하중재하능력과 파괴모드를 분석하였다. 실험결과, 접합부에서의 플랜지 단부 폭을 200mm에서 350mm로 증가시킬 경우 연결부의 강도 및 강성이 각각 1.61배와 1.56배가 증가했고, 인장철근을 보강할 경우 추가적으로 강성과 강도가 각각 1.35배와 1.92배 증가했다. 접합부 반복하중 실험에서는 접합 상세를 변수로 3개의 외부접합부 실험체를 구성했다. 접합부 보강상세로는 인장철근 보강과 강관의 두께, 수직강판 보강을 고려하였다. 모든 접합부 실험체는 보에서 뚜렷한 휨항복이 발생하였으며 접합부의 손상은 제한적이었다. 특히, 강재보가 강관에 직접 용접되는 경우 보의 웨브를 통해서도 하중이 전달되기 때문에, 플랜지 인장실험 결과보다 보수적인 설계가 가능하며, 접합부 강관 두께를 증가시키거나 수직강판으로 보강한 경우에는 추가적으로 패널존의 전단내력이 증가하는 것으로 나타났다.

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

DDC를 활용한 건식 보-기둥 모멘트 접합부의 내진 성능에 관한 연구 (A Study on the Energy Dissipation Capacity of Precast Concrete Beam-Column Connection using DDC)

  • 홍성걸;이상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.85-88
    • /
    • 2004
  • In this study, a simple moment-resisting precast concrete beam-column connection is proposed for highly seismic zone using dywidag ductile rod [DDC]. DDC is superior system for ductility, energy dissipation capacity, connection strength, and drift capacity. A study was carried out to investigate the connection behavior subjected to cyclic inelastic loading. Four Precast beam-column interior connections and one monolithic connection will be tested. The variables will be examined were the strength relationship between joint's ductile rod and beam reinforcement for gain energy dissipation capacity. The specimens will be tested only reverse cyclic loading in accordance with a prescribed displacement history. Connection performance is evaluated on the basis of ductility, energy dissipation capacity, connection strength, and drift capacity. the precast connection using DDC is capable of matching of exceeding the performance of the monolithic connection and thereby provides moment-resisting behavior.

  • PDF