• Title/Summary/Keyword: column-beam

Search Result 1,552, Processing Time 0.02 seconds

Strain penetration of high-strength steel bars anchored in reinforced concrete beam-column connections

  • Li, Ling;Zheng, Wenzhong;Wang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.367-382
    • /
    • 2019
  • This paper presents experimental and analytical investigations on additional fixed-end rotations resulting from the strain penetration of high-strength reinforcement in reinforced concrete (RC) beam-column connections under monotonic loading. The experimental part included the test of 18 interior beam-column connections with straight long steel bars and 24 exterior beam-column connections with hooked and headed steel bars. Rebar strains along the anchorage length were recorded at the yielding and ultimate states. Furthermore, a numerical program was developed to study the effect of strain penetration in beam-column connections. The numerical results showed good agreement with the test results. Finally, 87 simulated specimens were designed with various parameters based on the test specimens. The effect of concrete compressive strength ($f_c$), yield strength ($f_y$), diameter ($d_b$), and anchorage length ($l_{ah}$) of the reinforcement in the beam-column connection was examined through a parametric study. The results indicated that additional fixed-end rotations increased with a decrease in $f_c$ and an increase in $f_y$, $d_b$ and $l_{ah}$. Moreover, the growth rate of additional fixed-end rotations at the yielding state was faster than that at the ultimate state when high-strength steel bars were used.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

Classification Schemes of Precast Beam-Column Connections According to Contribution of Deformation Components (변형기여분에 따른 프리캐스트 보-기둥 접합부의 분류방안)

  • Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.545-553
    • /
    • 2014
  • This study suggested an integrated classification method for generalized characteristics of PC beam-column connection according to connection details. Quantifying the failure mode of PC-beam column connection and characteristics of corresponding details, this study suggested to use deformation contribution of each element of beam-column assemblage. According to the expected failure mode of beam-column connection assemblage, PC beam-column connection can be classified into 'equivalent monolithic system' and 'jointed system'. In this study, four test specimens were tested for verification of detailed classification method of PC beam-column connections. Test was carried out with typical beam-column connection test method. Load was applied at the top of test specimen and end of beams were restrained by hinge. In order to verify the deformation contribution of each test specimen, 34-LVDTs were mounted on test specimen. According to test results, deformation contribution of each test specimen have different characteristics. Deformation characteristics of joint and other components which are quantified by test results, equivalent monolithic system can be classified into two categories. Strong connection have extremely small deformation contribution of joint and much larger deformation contribution was shown in flexural behavior of beam. The other type of beam-column connection is ductile connection which allows the larger deformation in joint area compared with strong connection.

An Investigation into the Finite element Modelling on connections of H-beam to S.H.S Column (각형강관과 H형강보 접합부의 유한요소 모델링에 관한 연구)

  • 이종석;변우정;이광훈;강석봉;박순규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.68-75
    • /
    • 1995
  • In recent year, column member is used for square hollow section(5.H.5) and beam member is used for H-section. But 5.H.5 column has vulnerability because of low flexural stiffness between column and beam connection joints. To reinforce this vulnerability, 5.H.5 column filled with concrete and concrete slab connection compounded with H-beam is developed in many ways. In this paper, modelling of predicting behavior of various types of connections is studied using finite element method. k order to simulate the actual behavior, a three-dimensional modelling is used. A simple efficient contact algorithm with a new gap element is employed to simulate the interaction between 5.H.5 column and concrete, The modelling result$ are compared with the experimental results.

  • PDF

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Reinforced bars (철근으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Shin, Kyung Jae;Oh, Young Suk;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.377-390
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of concrete-filled steel tubular column to H-beam connections with reinforced bar. As a preliminary test, simple tensile test on the column to H-beam connections stiffened were conducted. The parameters of tensile test are the diameters of each rebars. The simple tensile test were conducted to 5 kinds of specimens. Estimating the load. displacement and strain for specimens, the result of tensile test were compared with the results of main test. On the basis of simple tensile test, tests are conducted to montonic and cyclic loading column to H-beam connections with the same diameters of rebars. Specimens of 5 are made for monotonic and cyclic loading test. In analysis, estimating the yielding strength and maximum strength of specimens on the basis of yield line theory, strength formula of beam-to column connections with concrete-filled steel tubular column was suggested.

  • PDF

Improvement, analytical verification and application of RC frame beam-column joint models

  • Fan, Guoxi;Wang, Debin;Jia, Jing
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. In order to get better understanding of the beam-column joint performance, a rational model needs to be developed. Based on the former considerations, two typical models for calculating the shear carrying capacity of the beam-column joint including the inelastic reinforced concrete joint model and the softened strut-and-tie model are selected to be introduced and analyzed. After examining the applicability of two typical models mentioned earlier to interior beam-column joints, several adjustments are made to get better predicting of the test results. For the softened strut-and-tie model, four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. While two adjustments for the inelastic reinforced concrete joint model including modifications of the confinement effect due to the column axial load and the correction coefficient for high concrete are made. It has been proved by test data that predicted results by the improved softened strut-and-tie model or the modified inelastic reinforced concrete joint model are consistent with the test data and conservative. Based on the test results, it is also not difficult to find that the improved beam-column joint model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.

Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections (콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구)

  • Kim, Cheol Hwan;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.741-748
    • /
    • 1998
  • Experimental studies were carried out with test parameters: diaphragm yield type and beam yield type, the opening hole size of inner steel diaphragm, and the existence of slab in order to understand the behavior of beam-to-concrete filled steel tube column rigid connections under cyclic loading condition. Test results show that the connections have good rotational capacity when the beam yields first and the joints should be designed such that the beam yields prior to the inner diaphragms.

  • PDF