• Title/Summary/Keyword: column shape

Search Result 448, Processing Time 0.023 seconds

A Study on the Structural Behavior of Fabricated Columns Reinforced with Steel sheet Forms and Angles (ㄱ형강과 강판을 이용한 조립 기둥의 거동에 관한 연구)

  • Kim, Sung-Bae;Lee, Chang-Nam;Yoon, Yeong-Ho;Kim, Sang-Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.89-98
    • /
    • 2007
  • The purpose of this study is to experimentally evaluate the structural behavior of built-up type column consisted of angles and y-shape steel sheet forms for filling concrete. This column for minimizing form working and reinforcement placing is able to improve capacity of construction and reduce the term of works. Thirteen 1/3 scaled columns were fabricated. The main variables are 1) effect of angles and y-shape steel sheets of fabricated columns, 2) slenderness of column, 3) eccentricity of column. The results show that the experimental capacity of built-up type column is similar to theoretical one by reinforcement concrete design code. The maximum loads increase according to the rate of angle to cross section of column.

A study on the structural performance of new shape built-up square column under concentric axial load

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1451-1464
    • /
    • 2015
  • Recently, in recognition of their outstanding structural performance, the use of Concrete Filled Steel Tube (CFT) columns has been increased. New shape welded built-up square tube was developed by the authors for broader usability using thin steel plates which were bent to be L-shaped (Channel) and each unit members were welded to form square steel tube as an cost-efficient use of expensive steel. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is achievable. In order to apply the new shape built-up square columns, the structural behavior and stress distribution with parameter width of thickness (b/t), with and without rib were predicted. The New shape welded built-up square tube effectively delayed the local buckling of the steel tube, which led to a greater strength and ductility than regular HSS.

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections (2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동)

  • Oh, Heon-Keun;Kim, Sun-Hee;Park, Chan-Myun;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.

Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces

  • Li, Yan-Wen;Yam, Michael C.H.;Zhang, Ping;Ke, Ke;Wang, Yan-Bo
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.611-628
    • /
    • 2022
  • Energy-dissipative rocking (EDR) columns are a class of seismic mitigation device capable of dissipating seismic energy and preventing weak-story failure of moment resisting frames (MRFs). An EDR consists of two hinge-supported steel columns interconnected by steel dampers along its height. Under earthquakes, the input seismic energy can be dissipated by plastic energy of the steel dampers in the EDR column. However, the unrecoverable plastic deformation of steel dampers generally results in residual drifts in the structural system. This paper presents a proof-of-concept study on an innovative device, namely self-centring energy-dissipative rocking (SC-EDR) column, aiming at enabling self-centring capability of the EDR column by installing a set of shape memory alloy (SMA) tension braces. The working mechanism of the SC-EDR column is presented in detail, and the feasibility of the new device is carefully examined via experimental and numerical studies considering the parameters of the SMA bar diameter and the steel damper plate thickness. The seismic responses including load carrying capacities, stress distributions, base rocking behaviour, source of residual deformation, and energy dissipation are discussed in detail. A rational combination of the steel damper and the SMA tension braces can achieve excellent energy dissipation and self-centring performance.

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

Behavior of Tapered Columns with Initial Imperfection (Initial Imperfection을 갖는 변단면 기둥의 거동 해석)

  • 이병구;모정만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.19-26
    • /
    • 1996
  • The main purpose of this paper is to investigate a more accurate behavior analysis of tapered column with initial imperfection. The nonlinear differential equations governing the deflected shapes of the tapered column with initial imperfection are derived by large deflection theory and solved numerically using the Runge-Kutta method and Regula-Falsi method. Three kinds of cross-sectional shape with simply supported end constraint are considered in numerical examples. The load versus displacement curves including the left and right end rotations are presented in figures. The effect of cross-sectional shapes on deflected shape is analyzed, and the deflected shapes of column for several initial imperfections are shown in figure.

  • PDF

ADINA/FSI Analysis of Petrochemical Plant Column Mixer (화학 플랜트용 칼럼 믹서의 ADINA/FSI 해석)

  • Lee, Won-Suk;Jung, Goo-Choong;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.916-921
    • /
    • 2006
  • Column mixer is one of the facility to mix fluids at petrochemical plants. The column vibration is caused by pumps for fluid inflow and mixing of inside fluids. This fluid induced vibration is mainly responsible for the reduction of column life. Measurements were performed three times for understanding the vibration characteristics of the column. First experimental results showed the need of stiffness reinforcement. After the reinforcement work, second measurement conformed the difference between two results. Modal analysis was also performed to investigate the resonance of the column vibration and the damage of the rib plate. To confirm the generation of the fluid instability in the column mixer fluid structure interaction analysis using ADINA/FSI was performed which showed the necessity of the modification of the rotary valve.

  • PDF

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.