• Title/Summary/Keyword: column effect

Search Result 2,092, Processing Time 0.023 seconds

Performance assessment of advanced hollow RC bridge column sections

  • Kim, T.H.;Kim, H.Y.;Lee, S.H.;Lee, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.703-722
    • /
    • 2015
  • This study investigates the performance of advanced hollow reinforced concrete (RC) bridge column sections with triangular reinforcement details. Hollow column sections are based on economic considerations of cost savings associated with reduced material and design moments, as against increased construction complexity, and hence increased labor costs. The proposed innovative reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of advanced hollow column sections under quasi-static monotonic loading. The results showed that the proposed triangular reinforcement details were equal to the existing reinforcement details, in terms of the required performance. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of the RC structures; and adopted a modified lateral confining effect model for the advanced hollow bridge column sections. Our study documents the testing of hollow RC bridge column sections with innovative reinforcement details, and presents conclusions based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm the design details, especially for the actual detailing employed in the field.

Investigation of rotational characteristics of column 'PINNED' bases of steel portal frames

  • Liu, Timothy Chi-Ho
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.187-200
    • /
    • 2001
  • Most of the portal frames are designed these days by the application of plastic analysis, with the normal assumption being made that the column bases are pinned. However, the couple produced by the compression action of the inner column flange and the tension in the holding down bolts will inevitably generate some moment resistance and rotational stiffness. Full-scale portal frame tests conducted during a previous research program had suggested that this moment can be as much as 20% of the moment of resistance of the column. The size of this moment of resistance is particularly important for the design of the tensile capacity of the holding down bolts and also the bearing resistance of the foundation. The present research program is aiming at defining this moment of resistance in simple design terms so that it could be included in the design of the frame. The investigation also included the study of the semi-rigid behaviour of the column base/foundation, which, to a certain extent, affects the overall loading capacity and stiffness of the portal frames. A series of column bases with various details were tested and were used to calibrate a finite element model which is able to simulate the action of the holding down bolts, the effect of the concrete foundation and the deformation of the base plate.

Finite element analysis of granular column for various encasement conditions subjected to shear load

  • Jaiswal, Akash;Kumar, Rakesh
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.645-655
    • /
    • 2022
  • Granular columns have recently found widespread use in underground construction. The behaviour of granular columns under vertical loads has been extensively studied, specifically in relation to vertical load capacity obtained by bulging of the column body, including the behaviour after encasement of material. Determining the shear strength of loose soils reinforced with granular columns has received less attention. After the observations of lateral deformation near the toe of the embankment, attempts have been made to strengthen the lateral strength of granular columns. The purpose of this research is to look into the effects of different encasement conditions on the lateral load capacity of granular columns. This was accomplished by three-dimensional finite element analysis with FEM software. Various normal pressures and two different encasement configurations, namely single layer encasement and double layer encasement, with differing tensile strengths, were used in this study to determine their effect on lateral resistance. The failure envelope for a single column planted in loose sand was used to analyse the findings for three different granular column diameters, as well as the impact of different encasement conditions. According to the findings, the inclusion of a Granular Column enhanced the shear strength and overall stiffness of the loose sand bed, and the encasement of the Granular Column helped in deriving higher lateral resistance.

Investigation of the effect of bolt diameter and end plate thickness change on bolt column-beam connection

  • Samet Oguzhan Dogan;Senol Gursoy;Ramazan Ozmen
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.155-170
    • /
    • 2024
  • Several types of column-beam connections are used in the design of steel structures. This situation causes different cross-section effects and, therefore, different displacements and deformations. In other words, connection elements such as welds, bolts, continuity plates, end plates, and stiffness plates used in steel column-beam connections directly affect the section effects. This matter reveals the necessity of knowing the steel column-beam connection behaviours. In this article, behaviours of bolted column-beam connection with end plate widely used in steel structures are investigated comparatively the effects of the stiffness plates added to the beam body, the change in the end plate thickness and bolt diameter. The results obtained reveal that the moment and force carrying capacity of the said connection increases with the increase in the end plate thickness and bolt diameter. In contrast, it causes the other elements to deform and lose their capacity. This matter shows that optimum dimensions are very important in steel column-beam connections. In addition, it has been seen that adding a stiffness plate to the beam body part positively contributes to the connection's moment-carrying capacity.

The Effect of Column Process on the Treatment of Municipal Solid Waste Leachate (Column 장치를 이용한 도시쓰레기 침출수의 처리효과)

  • Han, Mun-Gyu;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • Municipal landfill leachate, a major source of soil contamination and ground water pollution, causes serious environmental problems. To investigate the removal efficiency of pollutants in the leachate by sand, briquet ash, fly ash, and activated carbon columns, COD and some pollutants in the leachate passed through each column for 8 weeks were examined. Average COD removal efficiency for 8 weeks was 83%, 45%, and 43% by activated carbon, briquet ash and fly ash columns, respectively. COD was not effectively reduced by sand column. Average ${NH_4}\;^+$ removal efficiency for 8 weeks was more than 60% by ail columns. Hardness was effectively removed for 8 weeks by fly ash and activated carbon columns. Anoins including $PO_4\;^{3-}$, $CI^-$ and $SO_4^{2-}$ were not removed by all columns.

  • PDF

Experimental Study on the Confinement Effect of Headed Cross Tie in RC Column Subjected to Cycling Horizontal Load (철근콘크리트 기둥에서 반복횡력에 대한 헤드형 횡보강근의 구속효과에 대한 실험연구)

  • Seo, Soo Yeon;Ham, Ju Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents an experimental result and suggests the confinement effect of headed cross tie in reinforced concrete(RC) columns subjected to cycling horizontal loads under constant axial load. Five RC columns specimens were manufactured, taking confined type of transverse reinforcement, whether or not using cross tie, end detail of cross tie (hooked or headed), and axial stress in column as major variables, Cyclic horizontal load applied to the columns under constant axial stress and the effect of cross tie to structural capacity of column was evaluated from the test. The column without cross tie failed showing bending deformation of hoop with crack in core concrete at low horizontal load while the column with cross tie showed quite improved strength and ductility by suppressing bending deformation of hoop as well as buckling of longitudinal bar at once even after crack in core concrete. At high lateral displacement, the column with hooked cross tie showed the failure pattern loosing the confining force of cross tie since the $90^{\circ}$ hooked part of cross tie was stretched out and the cracked core concrete lumps were came off. However, the column with headed cross tie showed very stable behavior since the head of cross tie effectively confined the hoop and longitudinal bars even at high lateral displacement.

Multiscale modeling for compressive strength of concrete columns with circular cross-section

  • Wu, Han-liang;Wang, Yuan-feng
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.865-878
    • /
    • 2015
  • In order to construct a multiscale model for the compressive strength of plain concrete columns with circular cross section subjected to central longitudinal compressive load, a column failure mechanism is proposed based on the theory of internal instability. Based on an energy analysis, the multiscale model is developed to describe the failure process and predict the column's compressive strength. Comparisons of the predicted results with experimental data show that the proposed multiscale model can accurately represent both the compressive strength of the concrete columns with circular cross section, and the effect of column size on its strength.

Analysis of Pile Groups Considering Pile-Cap Interaction (말뚝-캡 강성을 고려한 군말뚝기초의 해석)

  • 정상섬;원진오;허정원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.363-370
    • /
    • 2001
  • A computationally efficient algorithm to analyze a group pile behavior is proposed by consideration of both soil-pile and pile-cap interactions. Using toad transfer method the nonlinear characteristics of the soil-pile interaction for a single pile is modeled by piecewise linear soil springs (p-y, t-z, and q-z curves). Beam-column method, one of the most practical approaches, is used for numerical modeling of the soil-pile system. In addition to the group effect resulting from the soil-pile-soil interaction, for a more realistic analysis it is essential to consider the effect of pile-cap interaction including geometric configuration of the piles in a group and conectivity conditions between piles and the cap. This paper mainly focuses on the pile-cap interaction and the development of a rational numerical procedure of its incorporation with the beam-column method.

  • PDF

Study on Strengthening Effect and Failure Behavior of CFS Strengthened High Strength RC Columns after Cross -sectional Shape Modification (4각기둥의 단면형상 변형 후 CFS로 보강한 고강도 철근 콘크리트 기둥의 보강효과 및 파괴거동 연구)

  • Jun Kyung-Suk;Kim Jang-Ho;Park Seok-Kyun;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.259-262
    • /
    • 2005
  • Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.

  • PDF