Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.6.645

Finite element analysis of granular column for various encasement conditions subjected to shear load  

Jaiswal, Akash (Department of Civil Engineering MANIT)
Kumar, Rakesh (Department of Civil Engineering MANIT)
Publication Information
Geomechanics and Engineering / v.29, no.6, 2022 , pp. 645-655 More about this Journal
Abstract
Granular columns have recently found widespread use in underground construction. The behaviour of granular columns under vertical loads has been extensively studied, specifically in relation to vertical load capacity obtained by bulging of the column body, including the behaviour after encasement of material. Determining the shear strength of loose soils reinforced with granular columns has received less attention. After the observations of lateral deformation near the toe of the embankment, attempts have been made to strengthen the lateral strength of granular columns. The purpose of this research is to look into the effects of different encasement conditions on the lateral load capacity of granular columns. This was accomplished by three-dimensional finite element analysis with FEM software. Various normal pressures and two different encasement configurations, namely single layer encasement and double layer encasement, with differing tensile strengths, were used in this study to determine their effect on lateral resistance. The failure envelope for a single column planted in loose sand was used to analyse the findings for three different granular column diameters, as well as the impact of different encasement conditions. According to the findings, the inclusion of a Granular Column enhanced the shear strength and overall stiffness of the loose sand bed, and the encasement of the Granular Column helped in deriving higher lateral resistance.
Keywords
encasement; FEM; granular column; lateral load; numerical analysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhang, L. and Zhao, M.H. (2015), "Deformation analysis of geotextile-encased stone columns", Int. J. Geomech., 15(3), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389.   DOI
2 Murugesan, S. and Rajagopal, K. (2010), "Studies on the behavior of single and group of geosynthetic encased stone columns", J. Geotech. Geoenviron. Eng., 136, 129-139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187   DOI
3 Ng, K.S. and Tan, S.A. (2015), "Stress transfer mechanism in 2D and 3D unit cell models for stone column improved ground", Int. J. Geosynth. Ground Eng., 1(3). https://doi.org/10.1007/s40891-014-0003-1.   DOI
4 Prasad, S.S.G. and Satyanarayana, P.V.V. (2016), "Improvement of soft soil performance using stone columns improved with circular geogrid discs", Indian J. Sci. Technol., 9(30), 1-6. https://doi.org/10.17485/ijst/2016/v9i30/99186.   DOI
5 Chen, J.F., Li, L.Y., Xue, J.F. and Feng, S.Z. (2015), "Failure mechanism of geosynthetic encased stone columns in soft soils under embankment", Geotext. Geomembranes, 43(5), 424-431. https://doi.org/10.1016/j.geotexmem.2015.04.016.   DOI
6 Jamshidi Chenari, R., Karimpour Fard, M., Jamshidi Chenari, M., and Shamsi Sosahab, J. (2017), "Physical and numerical modeling of stone column behavior in loose sand", Int. J. Civil Eng., 17(2), 231-244. https://doi.org/10.1007/s40999-017-0223-6.   DOI
7 Han, J. and Ye, S.L. (1992), "Settlement analysis of buildings on the soft clays stabilized by stone columns", Proceedings of The International Conference On Soil Improvement and Pile Foundations, Nanjing, China.
8 Aslani, M., Nazariafshar, J. and Ganjian, N. (2019), "Experimental study on shear strength of cohesive soils reinforced with stone columns", Geotech. Geol. Eng., 37(3), 2165-2188. https://doi.org/10.1007/s10706-018-0752-z.   DOI
9 Nazariafshar J. and Aslani, M. (2020), "Effect of stress concentration ratio on shear strength of soft soils improved with stone columns", Iran J. Sci. Technol. T. Civil Eng., 45(1-4), 1-20. http://doi.org/10.1007/s40996-020-00391-z.   DOI
10 Bergado, D.T. and Panichayatum, Sampaco, C.L. (1988), "Reinforcement of soft bangkok clay using granular piles", Proceedings of the international symposium on theory and practice of earth reinforcement, Kyushu, Japan.
11 Abusharar, S.W. and Han, J. (2011), "Two-dimensional deep-seated slope stability analysis of embankments over stone column improved soft clay", Eng. Geol., 120, 103-110. https://doi.org/10.1016/j.enggeo.2011.04.002.   DOI
12 Almeida, M.S., Hosseinpour, I., Riccio, M. and Alexiew, D. (2015), "Behavior of geotextile-encased granular columns supporting test embankment on soft deposit", J. Geotech. Geoenviron. Eng., 141(3), 04014116. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001256.   DOI
13 Almeida, M.S.S., Hosseinpour, I. and Riccio, M. (2013), "Performance of a geosynthetic-encased column (GEC) in soft ground: numerical and analytical studies", Geosynthetics Int., 20(4), 252-262. https://doi.org/10.1680/gein.13.00015.   DOI
14 Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotechgeoenviron. Eng. ASCE, 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405).   DOI
15 Castro, J. and Sagaseta, C. (2011) "Deformation and consolidation around encased stone columns", Geotext. Geomembranes, 29(3), 268-276. https://doi.org/10.1016/j.geotexmem.2010.12.001.   DOI
16 Aghili, E., Hosseinpour, I., Chenari, R.J. and Ahmadi, H. (2021), "Behavior of granular column-improved clay under cyclic shear loading", Transportation Geotech., 31, 100654. https://doi.org/10.1016/j.trgeo.2021.100654.   DOI
17 Ali, K., Shahu, J.T. and Sharma, K.G. (2014), "Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement", Geosynth. Int., 21(2), 103-118. https://doi.org/10.1680/gein.14.00002.   DOI
18 Bowles, J. (1997), "Foundation Analysis and Design 5th Ed", The McGraw-Hill Companies, Inc., New York, 308.
19 Cengiz, C., Kilic, I.E. and Guler, E. (2019), "On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads", Geotext. Geomembranes, 47, 193-202. https://doi.org/10.1016/j.geotexmem.2018.12.011.   DOI
20 Ayadat, T., Hanna, A.M. and Hamitouche, A. (2008), "Soil improvement by internally reinforced stone column", Ground Improv., 161(2), 55-63. https://doi.org/10.1680/grim.2008.161.2.55.   DOI
21 Barksdale, R.D. and Bachus, R.C. (1983), "Design and construction of stone columns", Vol.1. Report No. FHWA/ RD-83/026, National technical information service, Springfield, Virginia.
22 Hosseinpour, I., Almeida, M.S.S. and Riccio, M. (2015), "Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns", Geosynthetics Int., 22(6), 428-438. https://doi.org/10.1680/jgein.15.00023.   DOI
23 Ali, K., Shahu, J.T. and Sharma, K.G. (2012), "Model tests on geosynthetic-reinforced stone columns: a comparative study", Geosynth. Int., 19(4), 292-305. https://doi.org/10.1680/gein.12.00016.   DOI
24 Dash, S.K. and Bora, M.C. (2013), "Influence of geosynthetic encasement on the performance of stone columns floating in soft clay", Can Geotech. J., 50(7), 754-765. https://doi.org/10.1139/cgj-2012-0437.   DOI
25 Deb, K., Samadhiya, N.K. and Namdeo, J.B. (2010), "Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay", Geotext. Geomembranes, 29(2), 190-196. https://doi.org/10.1016/j.geotexmem.2010.06.004.   DOI
26 Fattah, M.Y., Shlash, K.T. and Al-Waily, M.J.M. (2011), "Stress concentration ratio of model stone columns in soft clays", Geotech. Test. J., 34(1), 1. https://doi.org/10.1520/GTJ103060.   DOI
27 Ghazavi, M. and Nazari Afshar, J. (2013), "Bearing capacity of geosynthetic encased stone columns", Geotext. Geomembranes, 38, 26-36. https://doi.org/10.1007/s13369-013-0709-8.   DOI
28 Hasan, M. and Samadhiya, N.K. (2017), "Performance of geosynthetic-reinforced granular piles in soft clays: Model tests and numerical analysis", Comput. Geotech., 87, 178-187. https://doi.org/10.1016/j.compgeo.2017.02.016.   DOI
29 Fattah, M.Y., Zabar, B.S. and Hassan, H.A. (2016), "Experimental analysis of embankment on ordinary and encased stone columns", Int. J. Geomech., 16(4), 04015102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000579.   DOI
30 Hasan M. and Samadhiya N.K. (2016), "Influence of combined vertical and horizontal reinforcement on granular piles in soft clays", Proceedings of the Indian Geotechnial Conference IGC2016, IIT Madras, Chennai, India, December.
31 Hosseinpour, I., Riccio, M. and Almeida, M.S.S. (2014), "Numerical evaluation of a granular column reinforced by geosynthetics using encasement and laminated disks", Geotext. Geomembranes, 42(4), 363-373. https://doi.org/10.1016/j.geotexmem.2014.06.002.   DOI
32 Hughes, J.M.O. and Withers, N.J. (1974), "Reinforcing of soft cohesive soils with granular columns", Ground Eng., 7(3), 42-49.
33 Pulko, B., Majes, B. and Logar, J. (2011), "Geosynthetic-encased stone columns: analytical calculation model", Geotext. Geomembranes, 29(1), 29-39. https://doi.org/10.1016/j.geotexmem.2010.06.005.   DOI
34 Alamgir, M., Miura, N. and Pooorooshasb Madhav, M.R. (1996), "Deformation analysis of soft ground reinforced by columnarinclusions", Comput. Geotech., 18(4), 267-290. https://doi.org/10.1016/0266-352X (95)00034-8.   DOI
35 Hosseinpour, I., Soriano, C. and Almeida, M.S. (2019), "A comparative study for the performance of encased granular columns", J. Rock Mech. Geotech. Eng., 11(2), 379-388. https://doi.org/10.1016/j.jrmge.2018.12.002   DOI
36 Khabbazian, M., Kaliakin V.N. and Meehan, C.L. (2010), "Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns", Geosynthetics Int., 17(3), 132-143. https://doi.org/10.1680/gein.2010.17.3.132.   DOI
37 Madhav, M.R., Sharma, J.K. and Sivakumar, V. (2009), "Settlement of and load distribution in a granular piled raft", Geomech. Eng., 1(1), 97-112. https://doi.org/10.12989/gae.2009.1.1.097.   DOI
38 Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2017), "3 Dimensional numerical modeling of geosynthetic-encased granular columns", Geotext. Geomembranes, 45, 131-141. https://doi.org/10.1016/j.geotexmem.2017.01.004.   DOI
39 Shamsi, M., Ghanbari, A. and Nazariafshar, J. (2019), "Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers", Geomech. Eng., 19(4), 329-342. https://doi.org/10.12989/gae.2019.19.4.329.   DOI
40 Khabbazian, M., Kaliakin, V.N. and Meehan, C.L. (2015), "Column supported embankments with geosynthetic encased columns: validity of the unit cell concept", Geotech. Geol. Eng., 33, 425-442. https://doi.org/10.1007/s10706-014-9826-8.   DOI
41 Lo, S.R., Zhang, R. and Mak, J. (2010), "Geosynthetic-encased stone columns in soft clay: a numerical study", Geotext. Geomembranes, 28(3), 292-302. https://doi.org/10.1016/j.geotexmem.2009.09.015.   DOI
42 Mohapatra, S.R. and Rajagopal, K. (2017), "Undrained stability analysis of embankments supported on geosynthetic encased granular columns", Geosynth. Int., 24, 465-479. https://doi.org/10.1016/j.geotexmem.2016.01.002.   DOI
43 Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2016), "Direct shear tests on geosynthetic-encased granular columns", Geotext. Geomembranes, 44, 396-405. https://doi.org/10.1016/j.geotexmem.2016.01.002.   DOI
44 Yoo, C. and Kim, S.B. (2009), "Numerical modeling of geosynthetic-encased granular column-reinforced ground", Geosynth. Int., 16(3), 116-126. https://doi.org//10.1680/gein.2009.16.3.116.   DOI
45 Murugesan, S. and Rajagopal, K. (2009), "Shear load tests on stone columns with and without geosynthetic encasement", Geotech. Test. J., 32(1). https://doi.org/10.1520/gtj101219.   DOI
46 Tan, X., Feng, L., Hu, Z. and Abbas, S.M. (2021), "The equivalent shear strength properties of the composite soil reinforced by stone columns: an FDM-DEM-coupled numerical evaluation", Environ. Earth Sci., 80(4), 1-12. https://doi.org/10.1007/s12665-021-09412-0.   DOI
47 Vekli, M., Aytekin, M., Ikizler, B. and Calik, U. (2012), "Experimental and numerical investigation of slope stabilization by stone columns", Nat. Hazards, 64(1), 797-820. https://doi.org/10.1007/s11069-012-0272-8.   DOI