• Title/Summary/Keyword: color-tuning

Search Result 44, Processing Time 0.029 seconds

Color-Tuning Mechanism of the Lit Form of Orange Carotenoid Protein

  • Man-Hyuk Han;Hee Wook Yang;Jungmin Yoon;Yvette Villafani;Ji-Young Song;Cheol Ho Pan;Keunwan Park;Youngmoon Cho;Ji-Joon Song;Seung Joong Kim;Youn-Il Park;Jiyong Park
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.513-525
    • /
    • 2023
  • Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes

  • Villafani, Yvette;Yang, Hee Wook;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.

Center wavelength shift and the optical property stabilization in photopolymer according to the press (포토폴리머에서 압착에 의한 중심파장 이동과 광학 특성 안정화 실험)

  • Kim, Eun-Seok;Kim, Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The playback wavelength shift and the optical property stabilization of the reflection type photopolymer OmniDex film are studied as a function of pressure. As the center wavelength is changed from 632 nm to 482 nm, the bandwidth is 27% broadened and the diffraction efficiency deviation maintained lower than 10%. These results show that the proposed color tuning method minimizes the change of optical properties more than 50% compared with the diffusion-based method as the center wavelength changed from 511 nm to 630 nm. The press-based color tuning method shows that it could be used to make holographic optical elements that operate at wavelengths where lasers are not readily available for reflection type holographic recording.

Tuning the Interference Color with PECVD Prepared DLC Thickness (PECVD를 이용한 DLC 두께 제어에 따른 간섭색 구현)

  • Park, Saebom;Kim, Kwangbae;Kim, Hojun;Kim, Chihwan;Choi, Hyun Woo;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.403-408
    • /
    • 2021
  • Various surface colors are predicted and implemented using the interference color generated by controlling the thickness of nano-level diamond like carbon (DLC) thin film. Samples having thicknesses of up to 385 nm and various interference colors are prepared using a single crystal silicon (100) substrate with changing processing times at low temperature by plasma-enhanced chemical vapor deposition. The thickness, surface roughness, color, phases, and anti-scratch performance under each condition are analyzed using a scanning electron microscope, colorimeter, micro-Raman device, and scratch tester. Coating with the same uniformity as the surface roughness of the substrate is possible over the entire experimental thickness range, and more than five different colors are implemented at this time. The color matched with the color predicted by the model, assuming only the reflection mode of the thin film. All the DLC thin films show constant D/G peak fraction without significant change, and have anti-scratch values of about 19 N. The results indicate the possibility that nano-level DLC thin films with various interference colors can be applied to exterior materials of actual mobile devices.

Implementation of Highly Efficient GMR Color Filter using Asymmetric Si3N4 Gratings (비대칭 Si3N4 격자를 사용한 고효율 GMR 컬러 필터의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • In this paper, a highly efficient GMR(guided-mode resonant) color filter is proposed and implemented. The GMR color filter consists of $Si_3N_4/air$ layers containing complementary fixed and mobile gratings. The device is designed using RETT(rigorous equivalent transmission-line theory) and a grating structure operating in subwavelength. The numerical result reveals that the color filter has a tuning capability of about 35 nm over the $0.45{\mu}m{\sim}0.55{\mu}m$ range for blue-green color and across $0.6{\mu}m{\sim}0.7{\mu}m$ range for red color. Furthermore, The color filters have a spectral bandwidth of about 8 nm with efficiencies of 99%, 98%, and 99% at the center wavelength of blue, green, and red color, respectively, and these are higher efficiencies than reported in the literature previously.

Composition-tunable emission colors of nitride phosphors

  • Xie, Rong-Jun;Hirosaki, Naoto;Takeda, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.50-51
    • /
    • 2009
  • Nitride Phosphors have recently been considered as a novel class of luminescent materials for white LEDs due to their promising luminescent properties. It is of great importance to tailor the emission color in order to meet the requirements for practical applications. The paper presents the results of tuning the emission colors of sialon phosphors through compositional tailoring.

  • PDF

New dual cascade loop controller with color LCD bar graphs, equipped with a memory card

  • Kanda, Masae;Uyeno, Mitsugu;Matsuo, Akira;Souda, Yasushi;Terauchi, Yukio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1327-1331
    • /
    • 1990
  • A new dual loop controller using color LCD bar graphs with LED back lights has been developed. An optional memory card is used to load or save the controller configuration, which may be a preprogrammed standard package or a user-programmed configuration, in addition to the built-in functions ready for user selection. The bar-graph display is selectable for single-loop or dual-loop use. A high grade of self-tuning functions using a modeling technique is built-in as standard. The controller can accommodate optional plug-in modules for thermocouples, communication, etc. All the options are fully field upgradable.

  • PDF

Substitution of Pro206 and Ser86 Residues in the Retinal Binding Pocket of Anabaena Sensory Rhodopsin is Not Sufficient for Proton Pumping Function

  • Choi, Ah-Reum;Kim, So-Young;Yoon, Sa-Ryong;Bae, Ki-Ho;Jung, Kwang-Hwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.138-145
    • /
    • 2007
  • Anabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark. Here, we mutated Pro206 to Glu or Asp, of which the residue is conserved as Asp among all other microbial rhodopsins, and the absorption maximum and pKa of the proton acceptor group were measured by absorption spectroscopy at various pHs. Anabaena rhodopsin was expressed best in Escherichia coli in the absence of extra leader sequence when exogenous all-trans retinal was added. The wild-type Anabaena rhodopsin showed small absorption maximum changes between pH4 and 11. In addition, Pro206Asp showed 46 nm blue-shift at pH7.0. Pro206Glu or Asp may change the contribution to the electron distribution of the retinal that is involved in the major role of color tuning for this pigment. The critical residue Ser86 (Asp 96 position in bacteriorhodopsin: proton donor) for the pumping activity was replaced with Asp, but it did not change the proton pumping activity of Anabaena rhodopsin.

Color Tuning of OLEDs Using the Ir Complexes of White Emission by Adjusting the Band Gap of Host Materials

  • Seo, Ji-Hyun;Kim, In-June;Seo, Ji-Hoon;Hyung, Gun-Woo;Kim, Young-Sik;Kim, Young-Kwan
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.18-21
    • /
    • 2008
  • We report on white organic light-emitting diodes (WOLEDs) based on single white dopants, $Ir(pq)_2$($F_2$-ppy) and $Ir(F_2-ppy)_2$(pq), where $F_2$-ppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively. The similar phosphorescent lifetime of two ligands lead to luminescence emission in two ligands simultaneously. However, the emission color of the devices was reddish, because the energy was not transferred efficiently from the 4,4,N,N'-dicarbazolebiphenyl (CBP) to the $F_2$-ppy ligand, due to the small band gap of the CBP. Accordingly, we used 1,4-phenylenesis(triphenylsilane) (UGH2) with a large band gap, instead of CBP as the host material. As a result, it was possible to adjust the emission color by the host material. The luminous efficiency of the device with $Ir(F_2-ppy)_2$(pq) doped in UGH2 was about 11 cd/A at 0.06 cd/$m^2$.