Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.7.403

Tuning the Interference Color with PECVD Prepared DLC Thickness  

Park, Saebom (Turinroad Co. Ltd.)
Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul)
Kim, Hojun (Department of Materials Science and Engineering, University of Seoul)
Kim, Chihwan (Turinroad Co. Ltd.)
Choi, Hyun Woo (Turinroad Co. Ltd.)
Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Materials Research / v.31, no.7, 2021 , pp. 403-408 More about this Journal
Abstract
Various surface colors are predicted and implemented using the interference color generated by controlling the thickness of nano-level diamond like carbon (DLC) thin film. Samples having thicknesses of up to 385 nm and various interference colors are prepared using a single crystal silicon (100) substrate with changing processing times at low temperature by plasma-enhanced chemical vapor deposition. The thickness, surface roughness, color, phases, and anti-scratch performance under each condition are analyzed using a scanning electron microscope, colorimeter, micro-Raman device, and scratch tester. Coating with the same uniformity as the surface roughness of the substrate is possible over the entire experimental thickness range, and more than five different colors are implemented at this time. The color matched with the color predicted by the model, assuming only the reflection mode of the thin film. All the DLC thin films show constant D/G peak fraction without significant change, and have anti-scratch values of about 19 N. The results indicate the possibility that nano-level DLC thin films with various interference colors can be applied to exterior materials of actual mobile devices.
Keywords
diamond like carbon; surface color; thickness; micro raman;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Robertson, Mater. Sci. Eng. R, 37, 129 (2002).   DOI
2 O. D. Coskun and T. Zerrin, Diam. Relat. Mater., 56, 29 (2015).   DOI
3 B. Mednikarov, G. Spasov, T. Babeva, J. Pirov, M. Sahatchieva, C. Popov and W. Kulish, J. Optoelectron. Adv. M., 7, 1407 (2005).
4 S. Kim and J. Jang, J. Korean Inst. Surf. Eng., 52, 16 (2019).   DOI
5 D. Sheeja, B. Tay and C. Lee, Diam. Relat. Mater., 11, 1643 (2002).   DOI
6 L. Yu, W. Fuming and Z. Ling, Sci. China-Phys. Mech. Astron., 56, 545 (2013).   DOI
7 S. Kalpakjian and S. Schmid, Manufacturing Processes for Engineering Materials, 5th ed., p. 294, Pearson Education (2008).
8 K. Kim and Y. Kim, J. Korean Inst. Surf. Eng., 42, 301 (2009).   DOI
9 E. Oliveira, S. Cruz and P. Aguiar, J. Braz. Chem. Soc., 23, 1657 (2012).   DOI
10 H. Im and K. Kim, J. Soc. e-Bus. Stu., 22, 1 (2017).
11 D. Tallant, J. Parmeter, M. Siegal and R. Simpson, Diam. Relat. Mater., 4, 191 (1995).   DOI
12 A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000).   DOI
13 M. Chhowalla, Y. Yin, G. Amaratunga, D. Mckenzie and T. Frauenheim, Appl. Phys. Lett., 69, 2344 (1996).   DOI
14 F. Derbyshire and D. Trimm, Carbon, 13, 111 (1975).   DOI