DOI QR코드

DOI QR Code

Tuning the Interference Color with PECVD Prepared DLC Thickness

PECVD를 이용한 DLC 두께 제어에 따른 간섭색 구현

  • Park, Saebom (Turinroad Co. Ltd.) ;
  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Hojun (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Chihwan (Turinroad Co. Ltd.) ;
  • Choi, Hyun Woo (Turinroad Co. Ltd.) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2021.05.24
  • Accepted : 2021.06.25
  • Published : 2021.07.27

Abstract

Various surface colors are predicted and implemented using the interference color generated by controlling the thickness of nano-level diamond like carbon (DLC) thin film. Samples having thicknesses of up to 385 nm and various interference colors are prepared using a single crystal silicon (100) substrate with changing processing times at low temperature by plasma-enhanced chemical vapor deposition. The thickness, surface roughness, color, phases, and anti-scratch performance under each condition are analyzed using a scanning electron microscope, colorimeter, micro-Raman device, and scratch tester. Coating with the same uniformity as the surface roughness of the substrate is possible over the entire experimental thickness range, and more than five different colors are implemented at this time. The color matched with the color predicted by the model, assuming only the reflection mode of the thin film. All the DLC thin films show constant D/G peak fraction without significant change, and have anti-scratch values of about 19 N. The results indicate the possibility that nano-level DLC thin films with various interference colors can be applied to exterior materials of actual mobile devices.

Keywords

References

  1. S. Kalpakjian and S. Schmid, Manufacturing Processes for Engineering Materials, 5th ed., p. 294, Pearson Education (2008).
  2. J. Robertson, Mater. Sci. Eng. R, 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0
  3. F. Derbyshire and D. Trimm, Carbon, 13, 111 (1975). https://doi.org/10.1016/0008-6223(75)90267-5
  4. K. Kim and Y. Kim, J. Korean Inst. Surf. Eng., 42, 301 (2009). https://doi.org/10.5695/JKISE.2009.42.6.301
  5. O. D. Coskun and T. Zerrin, Diam. Relat. Mater., 56, 29 (2015). https://doi.org/10.1016/j.diamond.2015.04.004
  6. E. Oliveira, S. Cruz and P. Aguiar, J. Braz. Chem. Soc., 23, 1657 (2012). https://doi.org/10.1590/S0103-50532012005000027
  7. L. Yu, W. Fuming and Z. Ling, Sci. China-Phys. Mech. Astron., 56, 545 (2013). https://doi.org/10.1007/s11433-013-5002-z
  8. B. Mednikarov, G. Spasov, T. Babeva, J. Pirov, M. Sahatchieva, C. Popov and W. Kulish, J. Optoelectron. Adv. M., 7, 1407 (2005).
  9. H. Im and K. Kim, J. Soc. e-Bus. Stu., 22, 1 (2017).
  10. D. Tallant, J. Parmeter, M. Siegal and R. Simpson, Diam. Relat. Mater., 4, 191 (1995). https://doi.org/10.1016/0925-9635(94)00243-6
  11. S. Kim and J. Jang, J. Korean Inst. Surf. Eng., 52, 16 (2019). https://doi.org/10.5695/JKISE.2019.52.1.16
  12. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095
  13. M. Chhowalla, Y. Yin, G. Amaratunga, D. Mckenzie and T. Frauenheim, Appl. Phys. Lett., 69, 2344 (1996). https://doi.org/10.1063/1.117519
  14. D. Sheeja, B. Tay and C. Lee, Diam. Relat. Mater., 11, 1643 (2002). https://doi.org/10.1016/S0925-9635(02)00109-7