Browse > Article

Substitution of Pro206 and Ser86 Residues in the Retinal Binding Pocket of Anabaena Sensory Rhodopsin is Not Sufficient for Proton Pumping Function  

Choi, Ah-Reum (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, So-Young (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Yoon, Sa-Ryong (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Bae, Ki-Ho (Department of Life Science, Yonsei University)
Jung, Kwang-Hwang (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 138-145 More about this Journal
Abstract
Anabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark. Here, we mutated Pro206 to Glu or Asp, of which the residue is conserved as Asp among all other microbial rhodopsins, and the absorption maximum and pKa of the proton acceptor group were measured by absorption spectroscopy at various pHs. Anabaena rhodopsin was expressed best in Escherichia coli in the absence of extra leader sequence when exogenous all-trans retinal was added. The wild-type Anabaena rhodopsin showed small absorption maximum changes between pH4 and 11. In addition, Pro206Asp showed 46 nm blue-shift at pH7.0. Pro206Glu or Asp may change the contribution to the electron distribution of the retinal that is involved in the major role of color tuning for this pigment. The critical residue Ser86 (Asp 96 position in bacteriorhodopsin: proton donor) for the pumping activity was replaced with Asp, but it did not change the proton pumping activity of Anabaena rhodopsin.
Keywords
Anabaena; rhodopsin; retinal; photoreceptor; sensory transduction; color tuning;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Balashov, S. P., E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang, and J. K. Lanyi. 2005. Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science 309: 2061-2064   DOI   ScienceOn
2 Beja, O., E. N. Spudich, J. L. Spudich, M. Leclerc, and E. F. DeLong. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411: 786-789   DOI   ScienceOn
3 Brown, L. S. and K. H. Jung. 2006. Bacteriorhodopsin-like proteins of eubacteria and fungi: The extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem. Photobiol. Sci. 5: 538-546   DOI   ScienceOn
4 Furutani, Y., A. Kawanabe, K. H. Jung, and H. Kandori. 2005. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: Hydrogen bond of a water between the Schiff base and Asp75. Biochemistry 44: 12287-12296   DOI   ScienceOn
5 Gordeliy, V. I., J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinger, G. Buldt, T. Savopol, A. J. Scheidig, J. P. Klare, and M. Engelhard. 2002. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419: 484-487   DOI   ScienceOn
6 Jung, K. H., V. D. Trivedi, and J. L. Spudich. 2003. Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47: 1513-1522   DOI   ScienceOn
7 Jung, K. H. and J. L. Spudich. 1998. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: Insights into the color-sensing mechanism. J. Bacteriol. 180: 2033-2042
8 Kim, J.-D., W.-S. Lee, B. Kim, and C.-G. Lee. 2006. Proteomic analysis of protein expression patterns associated with astaxanthin accumulation by green alga Haematococcus pluvialis (Chlorophyceae) under high light stress. J. Microbiol. Biotechnol. 16: 1222-1228   과학기술학회마을
9 Oesterhelt, D. and W. Stoeckenius. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70: 2853
10 Sineshchekov, O. A., V. D. Trivedi, J. Sasaki, and J. L. Spudich. 2005. Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J. Biol. Chem. 280: 14663-14668   DOI   ScienceOn
11 Spudich, J. L. and K. H. Jung. 2005. Microbial rhodopsins: Phylogenetic and functional diversity, pp. 1-24. In W. R. Briggs and J. L. Spudich (eds.). Handbook of Photosensory Receptors. Wiley-VCH
12 Jung, K. H. and J. L. Spudich. 2004. Microbial rhodopsins: Transport and sensory proteins throughout the three domains of life. Section II Photobiology. In Horspool, W. M. and Lenci, F. (eds.). CRC Handbook of Organic Photochemistry and Photobiology, 2nd Ed. Vol 3:124-1-11
13 Luecke, H., B. Schobert, J. K. Lanyi, E. N. Spudich, and J. L. Spudich. 2001. Crystal structure of sensory rhodopsin II at 2.4 angstroms: Insights into color tuning and transducer interaction. Science 293: 1499-1503   DOI
14 von Lintig, J. and K. Vogt. 2000. Filling the gap in vitamin A research. J. Biol. Chem. 275: 11915-11920   DOI   ScienceOn
15 Spudich, J. L. and H. Leucke. 2002. Sensory rhodopsin II: Functional insights from structure. Curr. Opin. Struct. Biol. 12: 540-546   DOI   ScienceOn
16 Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376   과학기술학회마을
17 Seo, H. S. and S. H. Bhoo. 2006. Photochromism of phytochromes and Cph1 requires critical amino acids and secondary structure in the N-terminal domain. J. Microbiol. Biotechnol. 16: 1441-1447   과학기술학회마을
18 Shimono, K., M. Iwamoto, M. Sumi, and N. Kamo. 1997. Functional expression of pharaonis phoborhodopsin in Escherichia coli. FEBS Lett. 420: 54-56   DOI   ScienceOn
19 Vogeley, L., O. A. Sineshchekov, V. D. Trivedi, J. Sasaki, J. L. Spudich, and H. Leucke. 2004. Anabaena sensory rhodopsin: A photochromic color sensor at 2.0A. J. Biol. Chem. 280: 14663-14668   DOI   ScienceOn
20 Gartner, W. and A. Losi. 2003. Crossing the borders: Archaeal rhodopsins go bacterial. Trends Microbiol. 11: 405-407   DOI   ScienceOn
21 Bergo, V. B., M. Ntefidou, V. D. Trivedi, J. J. Amsden, J. M. Kralj, K. J. Rothschild, and J. L. Spudich. 2006. Conformational changes in the photocycle of Anabaena sensory rhodopsin: Absence of the Schiff base counterion protonation signal. J. Biol. Chem. 281: 15208-15214   DOI   ScienceOn
22 Hoff, W. D., K. H. Jung, and J. L. Spudich. 1997. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26: 223-258   DOI   ScienceOn
23 Oesterhelt, D. 1998. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8: 489-500   DOI   ScienceOn
24 Spudich, J. L., C. Yang, K. H. Jung, and E. N. Spudich. 2000. Retinylidene proteins: Structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16: 365-392   DOI   ScienceOn
25 Shi, L., S. R. Yoon, A. G. Jr. Bezerra, K. H. Jung, and L. S. Brown. 2006. Cytoplasmic shuttling of protons in Anabaena sensory rhodopsin: Implications for signaling mechanism. J. Mol. Biol. 358: 686-700   DOI   ScienceOn
26 Imasheva, E. S., S. P. Balashov, J. M. Wang, and J. K. Lanyi. 2006. pH Dependent transition in xanthorhodopsin. Photochem. Photobiol. (In press)
27 Kim, J.-D. and C.-G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246   과학기술학회마을
28 Wang, W. W., O. A. Sineshchekov, E. N. Spudich, and J. L. Spudich. 2003. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278: 33985-33991   DOI   ScienceOn
29 Beja, O., L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. B. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F. DeLong. 2000. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289: 1902-1906   DOI   ScienceOn