하나의 객체 내에 존재하는 영역들이 상이한 칼라의 집합으로 구성되어 있다면, 해당 객체는 독립적인 영역들로 분할되기 때문에 객체의 의미가 상실된다. 따라서 영역에 대한 칼라 정보 외에 다른 지식 정보를 선택적으로 적용할 수 있는 방법이 요구된다. 본 논문에서는 영상을 구성하는 색상 정보 외에 입체감을 표현하기 위한 방법으로 명암의 등가를 연결한 등조선의 형태분석을 이용하고 있다. 그리고 분석된 정보를 통해 영역간의 독립, 종속 여부를 판단하여 객체의 의미 있는 영역 정합을 통한 객체 분리의 방법을 제시하고 있다.
Kim, Jai-Soon;Bobrinev, V.I.;Son, Jung-Young;Choi, Yong-Jin;Shin, Sang-Hun
Journal of the Optical Society of Korea
/
제4권1호
/
pp.66-70
/
2000
The main problem of image projection on a transmission type holographic screen is color sepa-ration. And it can be overcome by using a long narrow slit type diffuser as a source of the object beam when we record the screen. But that screen is not optimized and so needs changing several conditions. To set up the system many complicate things should be taken into accounted so it is very important to analyze the basic structure by simple concepts and calculations. We designed the system so that recording and projection axis coincide in one line and showed that the analysis of the system is very simple. We did it by a 1st order paraxial approximation calculation and it was good enough to describe the system. The photo-emulsion layer shrinks after processing of the hologram. It induced unsatisfactory color matching at the viewing zone. To overcome this effect, we pre-checked the shrinkage rate of an emulsion layer by experiments and modified the recording set up to compensate for the amount of shrinkage.
특정인을 추적하는 기술은 인간처럼 행동하는 로봇기술에서 가장 많이 등장하는 기술이다. 이 기술은 세 가지 영역에서 접근하고 있는데 첫 째가 특정인의 의상 색상이고 두 번째가 특정인의 얼굴과 그 표정이며 세 번째가 특정인의 제스처나 머리의 움직임이다. 그러나 로봇은 센서를 통해 색상이나 제스처를 감지할 수 있기 때문에 폐쇄회로 카메라를 통해 획득한 영상만으로 특정인을 추적하는 것과는 다르다. 폐쇄회로 카메라에서 가장 큰 문제점은 시스템 속도인데 입력된 영상에서 다시 계산에 의해 특정인을 추적하기위해서는 계산수를 줄여야한다. 시스템 속도를 높이기 위해 색상 추적은 통계치를 사용하는 것이 좋고 얼굴인식은 고유 얼굴을 사용하는 것이 바람직하다. 색상과 얼굴인식만으로는 추적에 어려움이 있기 때문에 모션 분석이 필요하다. 기존의 모션 분석이 주어진 영상의 전체 영역에서 형상을 바탕으로 이루어지기 때문에 속도가 느리고 인식률도 떨어진다. 본 논문에서는 얼굴 인식 시 찾아진 얼굴영역에 대한 모션분석을 계산속도가 빠른 운동에너지를 써서 인식률과 인식 속도를 높였다. 본 논문이 제안한 알고리즘과 Girondel, V. 등이 제시한 방법을 같은 동영상에서 실험한 결과 동일한 인식률을 얻었으며 인식속도는 제안한 알고리즘이 더 빨랐으며 LDA를 사용할 경우 속도는 비슷하나 인식률은 더 나은 결과를 얻었으며 특정인을 찾는 것은 제안한 알고리즘이 더 효과적이었다.
The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.
The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of$.$10 persons show that the proposed method yields high recognition rates.
This paper describes CAD tools for the construction of image database in IC chip analysis CAD system. For IC chip analysis by high-resolution microscopy, the image database is essential to manage more than several thousand images. But manual database construction is error-prone and time-consuming. In order to solve this problem, we develop a set of CAD toos that include image grabber to capture chip images, image editor to make the whole chip image database from the grabbed images, and image divider to reconstruct the database that consists of evenly overlapped images for efficient region search. we also develop an interactive pattern matching method for user-friendly image editing, and a heuristic region search method for fast image division. The tools are developed with a high-performance graphic hardware with JPEG image comparession chip to process the huge color image data. The tools are under the field test and experimental resutls show that the database construction time can be redcued in 1/3 compared to manual database construction.
The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of 10 persons show that the proposed method yields high recognition rates.
The objectives of this study were to investigate the images in men's hairstyle by hair color, tone, texture, and perceiver's gender, and to examine the characteristics of hairstyle appropriate to seasons. A quasi-experimental method by questionnaire was used, and the experimental design was $4{\times}3{\times}2{\times}2$(hair color$\times$tone$\times$texture$\times$perceiver's$\times$gender) factorial design. The subjects were 372 men and women in their 20s through 50s. five factors of men's hairstyle image were derived by factor analysis: individuality, dignity, romanticism, refinement, and activity. Black hair was perceived to be high in dignity and activity. Bright tone was perceived to be high in individuality, but low in dignity. Men's wave hair was perceived to be higher in individuality than straight hair, but lower in dignity. Perceiver's gender did not give significant influence on evaluation of all image factors. In brown, neutral tone was perceived to be higher in dignity. romanticism, and activity than dark or bright tone. In black, wave hair was perceived to be more refined than straight hair. Black hair matches with winter the most, and yellow matches with spring the most. In terms of tone, dark tone matches with winter; neutral tone matches with autumn; bright tone matches with summer. The results of this study verified that hair color and texture affect men's image perception, and matching hair colors are associated with seasons.
본 논문은 얼굴 요소 중 눈썹을 검출하기 위한 기법으로, 눈썹은 얼굴 인식이나 표정 인식, 얼굴 애니메이션에 중요한 역할을 하는 요소이다. 색상 영역 분할을 통해 얼굴 영역을 검출한 다음, 형판 정합(template matching)을 통해 눈을 검출한다. 눈썹은 눈 바로 위에 위치하므로 검출된 눈의 위치 값을 이용하여 눈썹 후보 영역을 설정한다. 이렇게 설정된 눈썹 후보 영역에서 휘도(luminance) 성분의 히스토그램을 구한 다음, 이 히스토그램을 이용하여 thresholding 기법으로 눈썹을 검출한다. 일반적으로 이런 히스토그램은 하나의 bin을 갖는 peak나 valley가 무수히 많아 threshold 간을 결정하는데 어려움이 있다. 이런 어려움을 극복하고 좀더 쉽게 threshold 값을 찾기 위해 이런 peak나 valley를 제거해 히스토그램을 변형한다. 제안된 알고리즘은 얼굴 영역 검출부, 얼굴 요소 검출부, 그리고 FCP 추출부 등의 세 부분으로 구성되어있다.
In this paper, we have implemented speeches that utilized the emotion information of the user's speech and image matching and recommendation system. To classify the user's emotional information of speech, the emotional information of speech about the user's speech is extracted and classified using the PLP algorithm. After classification, an emotional DB of speech is constructed. Moreover, emotional color and emotional vocabulary through factor analysis are matched to one space in order to classify emotional information of image. And a standardized image recommendation system based on the matching of each keyword with the BM-GA algorithm for the data of the emotional information of speech and emotional information of image according to the more appropriate emotional information of speech of the user. As a result of the performance evaluation, recognition rate of standardized vocabulary in four stages according to speech was 80.48% on average and system user satisfaction was 82.4%. Therefore, it is expected that the classification of images according to the user's speech information will be helpful for the study of emotional exchange between the user and the computer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.