• Title/Summary/Keyword: color image segmentation

Search Result 410, Processing Time 0.025 seconds

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

Color Image Segmentation Using Anisotropic Diffusion and Agglomerative Hierarchical Clustering (비등방형 확산과 계층적 클러스터링을 이용한 칼라 영상분할)

  • 김대희;안충현;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.377-380
    • /
    • 2003
  • A new color image segmentation scheme is presented in this paper. The proposed algorithm consists of image simplification, region labeling and color clustering. The vector-valued diffusion process is performed in the perceptually uniform LUV color space. We present a discrete 3-D diffusion model for easy implementation. The statistical characteristics of each labeled region are employed to estimate the number of total clusters and agglomerative hierarchical clustering is performed with the estimated number of clusters. Since the proposed clustering algorithm counts each region as a unit, it does not generate oversegmentation along region boundaries.

  • PDF

Color image segmentation using clustering based on mathematical morphology (수학적 형태학에 기반한 클러스터링을 이용한 칼라영상의 영역화)

  • 박상호;윤일동;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.68-80
    • /
    • 1996
  • In this paper, we propose a novel color image segmentation algorithm based on clustering in 3-dimensional color space employing the mathematical morphology. More specifically, since we take into account the topological properties such as the shape, connectivity and distribution of clusters in the clustering process, the number of clusters in the color cube, as well as their centers, can be easily obtained, without a priori knowledge on the input images. Intensive computer simulation has been performed and the results are discussed in this paper. The resutls of the simulation on the images in various color coordinates show that the segmentation is independent of the choice of color coordinates and the shape of clustes. Segmentation results of the vector quantizer are also presented for the comparison purpose.

  • PDF

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

Adaptive Skin Color Segmentation in a Single Image using Image Feedback (영상 피드백을 이용한 단일 영상에서의 적응적 피부색 검출)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.112-118
    • /
    • 2009
  • Skin color segmentation techniques have been widely utilized for face/hand detection and tracking in many applications such as a diagnosis system using facial information, human-robot interaction, an image retrieval system. In case of a video image, it is common that the skin color model for a target is updated every frame for the robust target tracking against illumination change. As for a single image, however, most of studies employ a fixed skin color model which may result in low detection rate or high false positive errors. In this paper, we propose a novel method for effective skin color segmentation in a single image, which modifies the conditions for skin color segmentation iteratively by the image feedback of segmented skin color region in a given image.

Efficient Color Image Segmentation using SOM and Grassfire Algorithm (SOM과 grassfire 기법을 이용한 효율적인 컬러 영상 분할)

  • Hwang, Young-Chul;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.142-145
    • /
    • 2008
  • This paper proposes a computationally efficient algorithm for color image segmentation using self-organizing map(SOM) and grassfire algorithm. We reduce a computation time by decreasing the number of input neuron and input data which is used for learning at SOM. First converting input image to CIE $L^*u^*v^*$ color space and run the learning stage with the SOM-input neuron size is three and output neuron structure is 4by4 or 5by5. After learning, compute output value correspondent with input pixel and merge adjacent pixels which have same output value into segment using grassfire algorithm. The experimental results with various images show that proposed method lead to a good segmentation results than others.

  • PDF

Color Image Segmentation for Content-based Image Retrieval (내용기반 영상검색을 위한 칼라 영상 분할)

  • Lee, Sang-Hun;Hong, Choong-Seon;Kwak, Yoon-Sik;Lee, Dai-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.2994-3001
    • /
    • 2000
  • In this paper. a method for color image segmentation using region merging is proposed. A inhomogeneity which exists in image is reduced by smoothing with non-linear filtering. saturation enhancement and intensity averaging in previous step of image segmentation. and a similar regions are segmented by non-uniform quantization using zero-crossing information of color histogram. A edge strength of initial region is measured using high frequency energy of wavelet transform. A candidate region which is merged in next step is selected by doing this process. A similarity measure for region merging is processed using Euclidean distance of R. G. B color channels. A Proposed method can reduce an over-segmentation results by irregular light sources et. al, and we illustrated that the proposed method is reasonable by simulation.

  • PDF

3D Segmentation for High-Resolution Image Datasets Using a Commercial Editing Tool in the IoT Environment

  • Kwon, Koojoo;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1126-1134
    • /
    • 2017
  • A variety of medical service applications in the field of the Internet of Things (IoT) are being studied. Segmentation is important to identify meaningful regions in images and is also required in 3D images. Previous methods have been based on gray value and shape. The Visible Korean dataset consists of serially sectioned high-resolution color images. Unlike computed tomography or magnetic resonance images, automatic segmentation of color images is difficult because detecting an object's boundaries in colored images is very difficult compared to grayscale images. Therefore, skilled anatomists usually segment color images manually or semi-automatically. We present an out-of-core 3D segmentation method for large-scale image datasets. Our method can segment significant regions in the coronal and sagittal planes, as well as the axial plane, to produce a 3D image. Our system verifies the result interactively with a multi-planar reconstruction view and a 3D view. Our system can be used to train unskilled anatomists and medical students. It is also possible for a skilled anatomist to segment an image remotely since it is difficult to transfer such large amounts of data.

Environment-Adaptive Image Segmentation Using Color Invariants (칼라 불변량을 이용한 환경 적응적인 영상 분할)

  • Jang, Seok-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.71-78
    • /
    • 2010
  • Even though various types of image segmentation methods have been extensively introduced, robustly segmenting images to environmental conditions such as illumination changes, shading, highlight, etc, has been known to be a very difficult task. To resolve the problem in some degree, we propose in this paper an environment-adaptive image segmentation approach using color invariants. The suggested method first introduces several color invariants like W, C, U, N, and H, and automatically measures environmental conditions in which images are captured. It then chooses the most adequate color invariant to environmental factors, and effectively extracts edges using the selected invariant. Experimental results show that the proposed method can robustly perform edge-based segmentation rather than existing methods. We expect that our method will be useful in many real applications which require edge-based image segmentation.

An Image Segmentation Technique For Very Low Bit Rate Video Coding

  • Jung, Seok-Yoon;Kim, Rin-Chul;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.19-24
    • /
    • 1997
  • This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.

  • PDF