• Title/Summary/Keyword: color histogram

Search Result 500, Processing Time 0.027 seconds

A Implementation of the Feature-based Hierarchical Image Retrieval System (특징기반 계층적 영상 검색 시스템의 구현)

  • 김봉기;김홍준;김창근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • As a result of remarkable developments in computer technology, the image retrieval system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we implemented the Hierarchical Image Retrieval System for content-based image data retrieval. At the first level, to get color information, with improving the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants(IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images And we could obtain the more improved results through the comparative test with other methods.

  • PDF

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.

Cut detection methods of real-time image sequences using color characteristics (컬러 특성을 이용한 실시간 동영상의 cut detection 기법)

  • Park, Jin-Nam;Lee, Jae-Duck;Huh, Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A study on image searching and management techniques is actively developed by user requirements for multimedia information that are existing as images, audios, texts data from various information processing devices. If we can automatically detect and segment changing scenes from real-time image sequences, we can improve an effectiveness of image searching systems. In this paper, we propose cut detection techniques based on image color distribution and we evaluated its performance on various real-time image sequences. Results of experiments show that the proposed method are robust on various image patterns than color histogram method using statistical informations of images. Also, these methods can be used for cut detection on real-time image sequences.

Recognition Performance Improvement of QR and Color Codes Posted on Curved Surfaces (곡면상에 부착된 QR 코드와 칼라 코드의 인식률 개선)

  • Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.267-275
    • /
    • 2019
  • Currently, due to the widespread use of a smartphone, QR codes allow users to access a variety of added services. However, the QR codes posted on curved surfaces tend to be non-uniformly illuminated and bring about the decline of recognition rate. So, in this paper, the block-adaptive binarization policy is adopted to find an optimal threshold appropriate for bimodal image like QR codes. For a large block, its histogram distribution is found to get an initial threshold and then the block is partitioned to reflect the local characteristics of small blocks. Also, morphological operation is applied to their neighboring boundary at the discontinuous at the QR code junction. This paper proposes an authentication method based on the color code, uniquely painted within QR code. Through a variety of practical experiments, it is shown that the proposed algorithm outperforms the conventional method in detecting QR code and also maintains good recognition rate up to 40 degrees on curved surfaces.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

Image Contrast and Sunlight Readability Enhancement for Small-sized Mobile Display (소형 모바일 디스플레이의 영상 컨트라스트 및 야외시인성 개선 기법)

  • Chung, Jin-Young;Hossen, Monir;Choi, Woo-Young;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.116-124
    • /
    • 2009
  • Recently the CPU performance of modem chipsets or multimedia processors of mobile phone is as high as notebook PC. That is why mobile phone has been emerged as a leading ICON on the convergence of consumer electronics. The various applications of mobile phone such as DMB, digital camera, video telephony and internet full browsing are servicing to consumers. To meet all the demands the image quality has been increasingly important. Mobile phone is a portable device which is widely using in both the indoor and outside environments, so it is needed to be overcome to deteriorate image quality depending on environmental light source. Furthermore touch window is popular on the mobile display panel and it makes contrast loss because of low transmittance of ITO film. This paper presents the image enhancement algorithm to be embedded on image enhancement SoC. In contrast enhancement, we propose Clipped histogram stretching method to make it adaptive with the input images, while S-shape curve and gain/offset method for the static application And CIELCh color space is used to sunlight readability enhancement by controlling the lightness and chroma components which is depended on the sensing value of light sensor. Finally the performance of proposed algorithm is evaluated by using histogram, RGB pixel distribution, entropy and dynamic range of resultant images. We expect that the proposed algorithm is suitable for image enhancement of embedded SoC system which is applicable for the small-sized mobile display.

  • PDF

Makeup transfer by applying a loss function based on facial segmentation combining edge with color information (에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환)

  • Lim, So-hyun;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

Improved Binarization and Removal of Noises for Effective Extraction of Characters in Color Images (컬러 영상에서 효율적 문자 추출을 위한 개선된 2치화 및 잡음 저거)

  • 이은주;정장호
    • Journal of Information Technology Application
    • /
    • v.3 no.2
    • /
    • pp.133-147
    • /
    • 2001
  • This paper proposed a new algorithm for binarization and removal of noises in color images with characters and pictures. Binarization was performed by threshold which had computed with color-relationship relative to the number of pixel in background and character candidates and pre-threshold for dividing of background and character candidates in input images. The pre-threshold has been computed by the histogram of R, G, B In respect of the images, while background and character candidates of input images are divided by the above pre-threshold. As it is possible that threshold can be dynamically decided by the quantity of the noises, and the character images are maintained and the noises are removed to the maximum. And, in this study, we made the noise pattern table as a result of analysis in noise pattern included in the various color images aiming at removal of the noises from the Images. Noises included in the images can figure out Distribution by way of the noise pattern table and pattern matching itself. And then this Distribution classified difficulty of noises included in the images into the three categories. As removal of noises in the images is processed through different procedure according to the its classified difficulties, time required for process was reduced and efficiency of noise removal was improved. As a result of recognition experiments in respect of extracted characters in color images by way of the proposed algorithm, we conformed that the proposed algorithm is useful in a sense that it obtained the recognition rate in general documents without colors and pictures to the same level.

  • PDF

Content-Based Image Retrieval using Third Order Color Object Relation (3차 칼라 객체 관계에 의한 내용 기반 영상 검색)

  • Kwon, Hee-Yong;Choi, Je-Woo;Lee, In-Heang;Cho, Dong-Sub;Hwang, Hee-Yeung
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • In this paper, we propose a criteria which can be applied to classify conventional color feature based Content Based Image Retrieval (CBIR) methods with its application areas, and a new image retrieval method which can represent sufficient spatial information in the image and is powerful in invariant searching to translation, rotation and enlargement transform. As the conventional color feature based CBIR methods can not sufficiently include the spatial information in the image, in general, they have drawbacks, which are weak to the translation or rotation, enlargement transform. To solve it, they have represented the spatial information by partitioning the image. Retrieval efficiency, however, is decreased rapidly as increasing the number of the feature vectors. We classify conventional methods to ones using 1st order relations and ones using 2nd order relations as their color object relation, and propose a new method using 3rd order relation of color objects which is good for the translation, rotation and enlargement transform. It makes quantized 24 buckets and selects 3 high scored histogram buckets and calculates 3 mean positions of pixels in 3 buckets and 3 angles. Then, it uses them as feature vectors of a given image. Experiments show that the proposed method is especially good at enlarged images and effective for its small calculation.

  • PDF