Abstract
A study on image searching and management techniques is actively developed by user requirements for multimedia information that are existing as images, audios, texts data from various information processing devices. If we can automatically detect and segment changing scenes from real-time image sequences, we can improve an effectiveness of image searching systems. In this paper, we propose cut detection techniques based on image color distribution and we evaluated its performance on various real-time image sequences. Results of experiments show that the proposed method are robust on various image patterns than color histogram method using statistical informations of images. Also, these methods can be used for cut detection on real-time image sequences.
멀티미디어 기기의 발전과 더불어 다양한 매체로부터 다양한 종류의 영상, 오디오, 텍스트 등의 정보가 난무하고, 이들 정보를 사용자의 요구에 따라 효과적으로 검색·관리를 위한 연구가 활발히 진행되어지고 있다. 실시간 연속 영상에서 내용이 연결되는 부분과 장면전환 등에 의해 내용이 바뀌는 부분을 자동 검출 가능하다면 적은 량의 데이터 내용 표현으로 영상 검색의 효율성을 증대시키는 효과를 가져 올 수 있을 것이다. 본 논문에서는 영상의 특성에 따른 실시간 Cut detection 기술을 제안하고 이 방법의 성능을 다양한 영상 데이터를 바탕으로 정확성 평가를 하였다. 그 결과 영상데이터의 컬러 특성에 관한 통계적인 특성 정보를 필요로 하는 기존의 컬러 히스토그램 방식과는 달리 본 방식은 각 프레임 영상의 색상 분포의 변화분에 의존하므로 어떤 종류의 영상 패턴에도 적용 가능한 robust한 방식이며, 실시간 입력영상의 cut detection 이 가능한 이점이 있음을 확인할 수 있었다.