• Title/Summary/Keyword: color filter array

Search Result 65, Processing Time 0.02 seconds

Color Filter Based on a Sub-wavelength Patterned Metal Grating (광파장 이하 주기를 갖는 금속 격자형 컬러필터)

  • Lee, Hong-Shik;Yoon, Yeo-Taek;Lee, Sang-Shin;Kim, Sang-Hoon;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.383-388
    • /
    • 2007
  • A color filter was demonstrated incorporating a patterned metal grating in a quartz substrate. The filter is created in a metal layer perforated with a symmetric two-dimensional array of circular holes, with the pitch smaller than the wavelength of the visible light. A finite-difference time-domain simulation was performed to analyze the device by investigating the effect of structural parameters like the grating height, the period, the hole size, and the refractive index of the hole-filling material on its performance. The device performance was especially optimized by controlling the refractive index of the material comprising the holes of the grating. And two different devices were fabricated by means of the e-beam direct writing with the following design parameters: the grating height of 50 nm, the two pitches of 340 nm for the red color and 260 nm for the green color. For the prepared device with the period of 340 nm, the center wavelength was 680 nm and the peak transmission 57%. And for the other device with the pitch of 260 nm, the center wavelength was 550 nm and the peak transmission was 50%. The filling of the hole with a material whose refractive index is matched to that of the substrate has led to an increase of ${\sim}15%$ in the transmission efficiency.

An Edge Directed Color Demosaicing Algorithm Considering Color Channel Correlation (컬러 채널 상관관계를 고려한 에지 방향성 컬러 디모자이킹 알고리즘)

  • Yoo, Du Sic;Lee, Min Seok;Kang, Moon Gi
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.619-630
    • /
    • 2013
  • In this paper, we propose an edge directed color demosaicing algorithm considering color channel correlation. The proposed method consists of local region classification step and edge directional interpolation step. In the first step, each region of a given Bayer image is classified as normal edge, pattern edge, and flat regions by using intra channel and inter channel gradients. Especially, two criteria and verification process for the normal edge and pattern edge classification are used to reduce edge direction estimation error, respectively. In the second step, edge directional interpolation process is performed according to characteristics of the classified regions. For horizontal and vertical directional interpolations, missing color components are obtained from interpolation equations based on intra channel and inter channel correlations in order to improve the performance of the directional interpolations. The simulation results show that the proposed algorithm outperforms conventional approaches in both objective and subjective terms.

An Efficient Color Interpolation Method for Color Filter Array (색상 필터 배열을 위한 효율적인 색상 보간 방법)

  • Cho, Yang-Ki;Kim, Hi-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.92-100
    • /
    • 2006
  • In imaging devices such as digital cameras using a single image sensor, captured images are the sub-sampled images comprised of the pixels that have only one of the three primary colors per a pixel. This images should be restored to the color images through an image processing referred as color interpolation. In this paper, we derive relation between the average of the data from CFA image sensor and the average of each color channel data. By using this relation, a new efficient method for color interpolation is proposed. Also, in order to reduce the zipper effect in a restored image, missing luminance values are interpolated along any edges in the captured image. On the other hand, for the chrominance channel interpolation, we average difference between a chrominance value and a luminance value in a local area, and this average value is added to the pixel value of the interpolated location. The proposed method has been compared with several previous methods, and our experimental results show the better results than the other methods.

Joint Demosaicking and Arbitrary-ratio Down Sampling Algorithm for Color Filter Array Image (컬러 필터 어레이 영상에 대한 공동의 컬러보간과 임의 배율 다운샘플링 알고리즘)

  • Lee, Min Seok;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • This paper presents a joint demosaicking and arbitrary-ratio down sampling algorithm for color filter array (CFA) images. Color demosaiking is a necessary part of image signal processing pipeline for many types of digital image recording system using single sensor. Also, such as smart phone, obtained high resolution image from image sensor has to be down-sampled to be displayed on the screen. The conventional solution is "Demosaicking first and down sampling later". However, this scheme requires a significant amount of memory and computational cost. Also, artifacts can be introduced or details get damaged during demosaicking and down sampling process. In this paper, we propose a method in which demosaicking and down sampling are working simultaneously. We use inverse mapping of Bayer CFA and then joint demosaicking and down sampling with arbitrary-ratio scheme based on signal decomposition of high and low frequency component in input data. Experimental results show that our proposed algorithm has better image quality performance and much less computational cost than those of conventional solution.

Image Restoration Considering Chromatic Aberration Problem of Multi-Spectral Filter Array Image (다중 분광 필터 배열 영상의 색수차 문제를 고려한 영상 복원 알고리즘)

  • Kwon, Ji Yong;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.123-131
    • /
    • 2016
  • To capture color and near-infrared images simultaneously, a multi-spectral filter array(MSFA) sensor is used. This is because an NIR band gives additional invisible information to human eyes to see subject under extremely low light level. However, because lenses have different refractive indices for different wavelengths, lenses may fail to focus widely different rays to the same convergence point. This is why a chromatic aberration(CA) problem occurs and images are degraded. In this paper, the image restoration algorithm for an MSFA image, which removes the CA problem, is presented. The obtained MSFA image is filtered by the estimated low-pass kernel to generate a base image. This base image is used to remove CA problem in multi-spectral(MS) images. By modeling the image degradation process and by using the least squares approach of the difference between the high-frequencies of the base and MS images, the desired high-resolution MS images are reconstructed. The experimental results show that the proposed algorithm performs well in estimating the high-quality MS images and reducing the chromatic aberration problem.

Demosaicking Method Using Color Difference in Wavelet Domain (웨이블릿 영역에서 색차를 이용한 디모자이킹 방법)

  • Jeong, Bo-Gyu;Seong, Young-Min;Kim, Byung-Chul;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, we present an efficient demosaicking method using the difference between color channels in the wavelet domain. In our method, the low frequency wavelet coefficients are obtained by an edge-directive interpolation using the observed high frequency coefficients. The missing high frequency coefficients are obtained by the estimated low frequency coefficients. In order to reduce artifacts in high frequency domain and to improve visual quality, we update the high frequency coefficient using the color difference rule in the wavelet domain. We simulate our demosaicking method in the wavelet domain and compare our algorithm to the existing demosaicking schemes. Experimental results illustrate that the proposed method can generate enhanced demosaicking results.

Color Image Restoration in Detected Aliasing Region (에일리어싱 영역 검출을 통한 컬러 영상 복원)

  • Kwon, Ji Yong;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.105-110
    • /
    • 2016
  • To reduce the cost and volume of a digital camera, a subsampled color filter array(CFA) image is used and demosaicking is applied to estimate the missing color values. However, aliasing, the overlaps of signals in the frequency domain, occurs when signals are subsampled. This causes aliasing artifacts such as false colors and zipper effects in demosaicking processes. In this paper, the algorithm estimating high-quality color images by removing aliasing artifacts in them is proposed. The aliasing region map is estimated using the sub-sampled signals of the CFA image. By using the aliasing region map and the estimated luminance image, the least squares problem of the observation models is designed and aliasing artifacts are eliminated. The experiments demonstrate that the proposed algorithm restores color images without aliasing artifacts.

A Study on the Implementation of Format Converter using Median Filter (메디안 필터를 이용한 포맷 변환기 구현에 관한 연구)

  • 김현기;하기종;최영규;류기한;이천희
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1137-1140
    • /
    • 2003
  • The area of the prototype device is less than 80mm$^2$. Operating with a 60ns clock cycle, the device typically dissipates only 300mW. The full functionality was proven by using the methodical test programs based on typical image processing operations. Also, we realized the whole process from conventional gray image to color image. Format converters, implemented using multidimensional access memories, transfer the data between the processing element array and conventional bit-parallel components in real time. The completed system is fully functional and performs typical low-level image processing tasks at speed exceeding 30 frames of traditional TV system per second.

  • PDF

Edge-directed demosaicing considering cross channel correlation (채널간 상관관계 및 에지 방향을 고려한 컬러 보간)

  • Yoo, Du-Sic;Kang, Moon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.413-414
    • /
    • 2007
  • 본 논문은 칼라 필터 배열(color filter array : CFA) 영상에서 채널 간 상관관계를 이용한 새로운 에지 방향 컬러 보간 방법을 제시하였다. 고정 채널 간 컬러 차 가정에 따라 휘도와 색차간의 차가 큰 경우 에지 영역이라 판단한다. 에지 방향 판별을 정확히 하기 위해 수평, 수직 방향으로 컬러 차 영상을 구하고, 구한 영상에서 변화량을 계산하여 에지 방향 판별 기준으로 사용한다. 에지 판별 기준을 사용하여, 에지 방향에 따라 컬러 보간을 수행한다. 평탄 영역은 이웃 화소와의 유사성에 따라 가중치를 다르게 줘서, 이웃 화소의 가중치 합으로 구한다 실험 결과는 제안하는 알고리즘이 기존 알고리즘 보다 우수함을 보여준다.

  • PDF

A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts (컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘)

  • Yoo, Du Sic;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.205-215
    • /
    • 2013
  • In digital imaging system, Bayer pattern is widely used and the observed image is degraded by optical blur during image acquisition process. Generally, demosaicing and deblurring process are separately performed in order to convert a blurred Bayer image to a high resolution color image. However, the demosaicing process often generates visible artifacts such as zipper effect and Moire artifacts when performing interpolation across edge direction in Bayer pattern image. These artifacts are emphasized by the deblurring process. In order to solve this problem, this paper proposes a deblurring algorithm combined with edge directional color demosaicing method. The proposed method is consisted of interpolation step and region classification step. Interpolation and deblurring are simultaneously performed according to horizontal and vertical directions, respectively during the interpolation step. In the region classification step, characteristics of local regions are determined at each pixel position and the directionally obtained values are region adaptively fused. Also, the proposed method uses blur model based on wave optics and deblurring filter is calculated by using estimated characteristics of local regions. The simulation results show that the proposed deblurring algorithm prevents the boosting of artifacts and outperforms conventional approaches in both objective and subjective terms.