• Title/Summary/Keyword: colloids

Search Result 151, Processing Time 0.022 seconds

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

Pretreatment in Reverse Osmosis Seawater Desalination: A Short Review

  • Valavala, Ramesh;Sohn, Jin-Sik;Han, Ji-Hee;Her, Nam-Guk;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.205-212
    • /
    • 2011
  • Reverse osmosis (RO) technology has developed over the past 40 years to control a 44% market share in the world desalting production capacity and an 80% share in the total number of desalination plants installed worldwide. The application of conventional and low-pressure membrane pretreatment processes to seawater RO (SWRO) desalination has undergone accelerated development over the past decade. Reliable pretreatment techniques are required for the successful operation of SWRO processes, since a major issue is membrane fouling associated with particulate matter/colloids, organic/inorganic compounds, and biological growth. While conventional pretreatment processes such as coagulation and granular media filtration have been widely used for SWRO, there has been an increased tendency toward the use of ultrafiltration/microfiltration (UF/MF) instead of conventional treatment techniques. The literature shows that both the conventional and the UF/MF membrane pretreatment processes have different advantages and disadvantages. This review suggests that, depending on the feed water quality conditions, the suitable integration of multiple pretreatment processes may be considered valid since this would utilize the benefits of each separate pretreatment.

A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System (입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구)

  • Lee, J.K.;Kim, S.C.;Kim, H.J.;Lee, C.G.;Ju, C.H.;Lee, L.C.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

SIGNIFICANCE OF ACTINIDE CHEMISTRY FOR THE LONG-TERM SAFETY OF WASTE DISPOSAL

  • Kim, Jae-Il
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.459-482
    • /
    • 2006
  • A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the performance assessment (PA) as known generally.

표면특성이 제어된 기능성 나노 입자의 전자 및 의공학적 응용

  • 박영준;이준영;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.54-55
    • /
    • 2002
  • The fabrication, characterization and manipulation of nanoparticle system brings together physics, chemistry, materials science and biology in an unprecedented way. Phenomena occurring in such systems are fundamental to the workings of electronic devices, but also to living organisms. The ability to fabricate the surface of nanoparticles Is essential in the further development of functional devices that incorporate nanoscale features. Even more essential is the ability to introduce a wide range of chemical and materials flexibility into these structures to build up more complex nanostructures that can ultimately rival biological nanosystems. In this respect, polymers are potentially ideal nanoscale building blocks because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated. In this presentation, we will look at a number of promising polymer-based nanoparticle fabrication strategies that have been developed recently, with an emphasis on those techniques that incorporate nanostructured polymeric particles into electronic devices or biomedical applications. And functional nanoparticles deliberately designed using several powerful process methods and their application will be discussed. Nanostructured nanoparticles, what we called, implies dispersed colloids with the size ranged from several nanometers to hundreds of nanometer. They have extremely large surface area, thus it is very important to control the morphology or surface functionality fitted for adequate objectives and properties. Their properties should be controlled for various kind of bio-related technologies, such as immunomagnetic cell separation, drug delivery systems, labeling and identification of lymphocyte populations, extracorporeal and hemoperfusion systems, etc. Well-defined polymeric nanoparticles can be considered as smart bomb or MEMS.

  • PDF

Polydispersed Colloid Transport in Porous Media : An Experiment and Modeling (다공성 매질에서의 크기 분포를 갖는 콜로이드 이동 : 실험과 모델)

  • Park, Hee-Ju;Lee, Kon-Jae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • The mechanism of radionuclide colloid transport in porous media was studied through modeling and experiment. A nondestructive column scanning system was developed to improve the traditional destructive core slicing method. With an aid of this system we could get much more results from one experiment. Neutron activated clay soaked with soluble isotopes was used as colloid suspension. Filtration coefficients obtained through the experiments show two families of colloids despite their size distribution. New modeling of polydispersed colloid transport was made with two lumped parameters. This new model simulates well. Among the soluble isotopes $^{l37}$Cs mowed mainly as a form of colloid, but $^{85}$ Sr did not.t.

  • PDF

Conformational Stability of Proteins in Colloidal Food Model System (콜로이드 모델 식품에 있어 단백질의 구조적 안정성)

  • Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.277-281
    • /
    • 1993
  • To elucidate the conformational stability of proteins in colloidal food system, molecular properties of various proteins such as chemically modified ${\beta}-lactoglobulin$, bovine serum albumin (BSA) structural intermediates, and ${\beta}-casein$ under chaotropic conditions, were examined using circular dichroism, SS bond content, and hydrodynamic radius determination. As refolding time increases, BSA intermediates approach the conformation of native BSA. And succinylation made ${\beta}-lactoglobulin$ have more aperiodic structure by increasing net negative charge. Also, under chaotropic conditions, the conformation of P-casein was affected by hydrophobic interactions. This study clearly indicates that hydrophobic interactions and electrostatic interactions are major contributing factors in conformational stability of proteins.

  • PDF

Synthesis of CuSbS2 and CuSbSe2 Nanocrystals by a Mechanochemical Method (기계화학적 방법에 의한 CuSbS2와 CuSbSe2 나노입자의 합성)

  • Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • $CuSbS_2$ (CAS) and $CuSbSe_2$ (CASe) nanocrystals (NCs), which consist of earth-abundant elements, were synthesized by a mechanochemical method. Elemental precursors such as copper, antimony, sulfur, and selenium were used without adding any organic solvents or additives. The NCs were synthesized by milling for a few hours. The sudden phase changes occurred by self-ignition and propagation, as previously observed in other mechanochemical synthetic processes. The XRD, Raman, and TEM analysis were carried out to determine the crystallinity and secondary phase of the as-synthesized CAS and CASe NCs, confirming the phase-pure synthesis of CAS and CASe. Optical properties were investigated by UV-Vis spectroscopy and it was observed that the band gap energies were about 1.1 and 1.5 eV, respectively for CAS and CASe, suggesting the potential for the use as solar cell materials. The NC colloids dispersed in anhydrous ethanol were prepared and coated on Mo substrates by a facile doctor-blade method. The investigation on the solar cell properties of the as-synthesized materials is underway.

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik;Kershner, Ryan J.;Braun, Paul V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.129-132
    • /
    • 2009
  • Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.