• 제목/요약/키워드: colloidal silver

검색결과 40건 처리시간 0.029초

Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi

  • Min, Ji-Seon;Kim, Kyoung-Su;Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Seung-Bin;Jung, Moo-Young;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.376-380
    • /
    • 2009
  • Effects of silver nanoparticles on the phytopathogenic fungal growth were investigated. Fungal phytopathogens, especially for sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, were selected due to their important roles in survival and disease cycle. Tests for the fungal hyphal growth revealed that silver nanoparticles remarkably inhibit the hyphal growth in a dose-dependent manner. Different antimicrobial efficiency of the silver nanoparticle was observed among the fungi on their hyphal growth in the following order, R. solani > S. sclerotiorum > S. minor. Tests for the sclerotial germination growth revealed that the nanoparticles showed significant inhibition effectiveness. In particular, the sclerotial germination growth of S. sclerotiorum was most effectively inhibited at low concentrations of silver nanoparticles. A microscopic observation revealed that hyphae exposed to silver nanoparticles were severely damaged, resulting in the separation of layers of hyphal wall and collapse of hyphae. This study suggests the possibility to use silver nanoparticles as an alternative to pesticides for scleotium-forming phytopathogenic fungal controls.

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2592-2596
    • /
    • 2012
  • Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

나노 사이즈의 은 콜로이드를 이용한 PE/PP 부직포의 항균성에 관한 연구 (A study on antibacterial Property of padded PE/PP nonwovens with nano-silver colloidal solution)

  • Hwang, Yun-Hwan;Jeong, Sung-Hoon
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.241-242
    • /
    • 2003
  • Silver has antibacterial property on bacteria of about 650 kinds and has been well known as non-toxic and non-tolerance in natural state. Recently, silver has been applied disinfection and antibacterial property to everyday life as health foods, filter, and exclusion of pollution. Nano-sized silver particle have very small size (〈10nm) and wide surface area per unit volume. PE/PP nonwovens used as back sheet or coverstock of baby diaper, adult diaper, sanitary napkin, and wiper. (omitted)

  • PDF

On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip

  • Park, Jongman;Kim, Shinseon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.45-50
    • /
    • 2014
  • A fully packed capillary electrochromatographic (CEC) microchip with an on-column micro-solid phase extraction (SPE) bed for the preconcentration and separation of organic analytes was prepared. A linear microchannel with monodisperse colloidal silica packing was formed on a cyclic olefinic copolymer microchip with two reservoirs on both ends. Silver-cemented silica packing frit structure was formed at the entrance of the microchannel by electroless plating treatment as a base layer. A gold coating was formed on it by reducing $Au^{3+}$ to gold with hydroxylamine. Finally micro-SPE bed was formed by self-assembly adsorption of 1-dodecanethiol on it. Micro-SPE beds were about 100-150 ${\mu}m$ long. Approximately $10^3$ fold sensitivity enhancements for Sulforhodamine B, and Fluorescein in nM concentration levels were possible with 80 s preconcentration. Basic extraction characteristics were studied.

광화학적 방법을 이용한 금속입자의 합성과 광학적 특성 연구 (Surface Plasmon Resonances of Metal Colloidal Particles Synthesized by a Photo-Chemical Process)

  • 고민진
    • 대한화학회지
    • /
    • 제43권1호
    • /
    • pp.1-7
    • /
    • 1999
  • 이 논문에서는 광화학적 방법을 이용하여 금속 콜로이드 입자를 반도체 나노입자를 함유한 수용액내에서 제조하여 그 광학적 특성을 관찰하였다. 형성된 금속입자는 사용된 반도체 입자에 따라 다른 경향을 나타낸다. Au 금속 입자를 CdS 입자를 함유한 수용액내에서 제조한 경우 일반적인 금속 입자의 Plasmon Resonance의 특성을 보이는 반면 Ag금속 입자를 AgBr 입자를 함유한 용액내에서 제조한 경우 Red-Shift 현상을 보였고, 그 정도는 UV 조사량에 따라 달라졌다. 이러한 금속 Plasmon Resonance의 Red-Shift 현상을 Effective Medium 이론을 이용하여 이론적으로 설명하였다.

  • PDF

Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

  • Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Yun-Seok;Min, Ji-Seon;Lee, Youn-Su
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.53-58
    • /
    • 2012
  • This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

Glycidyltrimethylammonium Chloride(GTAC)를 이용한 양모 섬유 표면의 Silver Nanoparticle 부착 (Attachment of Silver Nanoparticles to the Wool Fiber Using Glycidyltrimethylammonium Chloride(GTAC))

  • 이승영;설인환;이재웅
    • 한국염색가공학회지
    • /
    • 제28권2호
    • /
    • pp.70-76
    • /
    • 2016
  • Silver nanoparticles(AgNPs) were attached to wool fibers using glycidyltrimethylammonium chloride(GTAC), which is a type of quaternary ammonium salt. GTAC, which contains an epoxy functional group that, under high temperatures, generates a ring-opening reaction with wool fibers, which contain the amine group. Then, the AgNPs are attached to the surface of the GTAC-treated wool fibers by treatment with a silver colloidal solution. The process involves the following procedures: (1) The wool fibers are immersed in the GTAC solution, followed by pre-drying at $80^{\circ}C$ and curing at $180^{\circ}C$ to induce an alteration in the chemical structure; and (2) The wool fibers treated with GTAC are immersed in the silver colloid at $40^{\circ}C$ for 120 min to chemically induce a strong attachment of the AgNPs to the wool fibers. Scanning electron microscopy was used to analyze the influence of the concentrations of GTAC and the silver colloid, as well as the influence of the applied temperature of the silver colloid on the wool fibers, and the influence of the morphological changes in the wool fiber surfaces. As a result, the enhanced concentrations of GTAC and the silver colloid together with an elevated applied temperature of silver colloid have a tendency to increase in Ag atomic%.

은 나노입자를 담지한 collagen/silica microsphere 복합체의 제조 (Preparation of Silica/collagen Microsphere Composit Doped with Silver Nanoparticles)

  • 정효정;김연범;장윤호
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.722-726
    • /
    • 2008
  • 실리카 microsphere는 HPLC를 위한 흡착 충진제와 같은 용도로 사용하기에 적합한 혁신적인 소재로 널리 알려져 있다. microsphere을 기능성고분자나 금속, 생리활성 물질과 같은 특정한 성질을 지닌 물질로 표면 개질시키므로 다양한 용도로 활용할 수 있다. 콜라겐은 생체조직을 구성하는 기본 단백질로 생체적합성이 뛰어난 물질로 주목받고 있는 기능성 소재이다. 본 연구에서는 50% 이상의 세공부피를 지닌 다공성 silica microsphere를 고분자 응집법인 PICA 법을 이용하여 colloidal silica로부터 제조하고 콜라겐 hydrogel을 사용하여 표면 개질시키므로 생체적합성을 증진시키는 방법을 연구하였다. 실리카/콜라겐 microsphere 에 은 나노입자를 담지시킨 microsphere 복합체를 만들고 특성을 조사하므로 생체소재로의 활용 가능성을 조사하였다.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.