• Title/Summary/Keyword: colloidal

Search Result 1,005, Processing Time 0.027 seconds

Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk;Park, O-Ok
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.189-194
    • /
    • 2004
  • When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

STUDY OF STABILITY AND EFFECT OF COLLOIDAL SILVER IN VARIOUS EMULSIONS (Colloidal Silver Emulsion에서 안정성과 효능, 효과에 관한연구)

  • 지홍근;윤경로
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.1
    • /
    • pp.48-73
    • /
    • 1998
  • Colloid refers to dispersed particles of solid or liquid having diameters of $10^{-5}$ to $10^{-7}$cm, among which colloidal silver is produced by electrolysis. Colloidal silver of various concentrations according to charge and time were formed, antimicrobial activity of colloidal silver was measured. And, the optimum conditions for emulsion were determined by changing the concentration of coloidal silver. Also, the stability of the emulsion was measured by zeta potential and chroma meter by applying colloidal silver to creams(W/S, O/W, MLV)

  • PDF

Structure, stability and applications of colloidal crystals

  • Yanagioka, Masaki;Frank, Curtis W.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.97-107
    • /
    • 2008
  • This article presents an overview of current research activities that center on colloidal crystals resulting from self-assembly of surface-charged nanoparticles. It is organized into three parts: the first part discusses characterization of colloidal structures, the second part describes colloidal stability from the rheological aspects of colloidal crystals suspended in medium, and the third part highlights polymerized colloidal crystals as a promising application. Finally, we briefly discuss the directions of future research in this area.

Multiple-Layered Colloidal Assemblies via Dipping Method with an External Electric Field

  • Im, Sang-Hyuk;Park, O-Ok;Kwon, Moo-Hyun
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.110-114
    • /
    • 2003
  • When using the dipping method for crystal formation, mono-layered colloidal crystal structures depend upon the lift-up rate of a glass substrate. The mono-layered colloidal crystals showed the highest quality when the glass substrate was raised at a rate of 3 mm/min at 25 $^{\circ}C$ in a 1 wt% polystyrene colloidal suspension (ethanol medium). In addition, in order to obtain multiple-layered colloidal crystals, an external electric Held was introduced. Multiple-layered colloidal crystals were successfully obtained via this method. The colloidal particles were well ordered over large areas and assembled into a homogeneous structure.

Protein-Coating Evaluation Method of Colloidal Gold Nanoparticles (콜로이드 골드 나노입자의 단백질 수송성 평가법)

  • Kim, Mi-Young;Noh, Sang-Myoung;Kim, Jung-Mogg;Choi, Han-Gon;Kim, Jung-Ae;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.465-469
    • /
    • 2004
  • Colloidal gold nanoparticles might be of use as nano scale delivery systems of various therapeutic materials in the future. Recent studies have reported the feasibility of colloidal gold nanoparticles as gene delivery systems or protein delivery systems. In this study, we aimed to develop a short-step method useful for screening the optimal coating conditions of colloidal gold nanoparticles with proteins. We observed that colloidal gold nanoparticles have properties of changing its unique color when they were exposed to NaCl solution. Taking advantage of the color changing properties of colloidal gold nanoparticles, we applied the color testing method of colloidal gold nanoparticles solutions for evaluating the protein coating nature. Using bovine serum albumin as a model protein, we tested the protein coating of colloidal gold nanoparticles via the color change upon NaCl addition. The optimal coating concentration and coating conditions of colloidal gold nanoparticles with bovine serum albumin were fixed using the color testing methods. We suggest that the color testing method might be applied to optimize the coating condition of colloidal gold nanoparticles with other therapeutic proteins.

Confocal Microscopy of Colloidal Suspensions

  • Kim, Jin Young;Weon, Byung Mook
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.30-33
    • /
    • 2014
  • Colloidal systems or colloids consist of microparticles or nanoparticles (solute) uniformly suspended in a liquid (solvent), also called colloidal suspensions. They can mimic and exhibit microscopic or atomic aspects of molecular and atomic systems. They have been increasingly studied because of their similarity with atomic systems. They can be microscopically observed by optical microscopes because they are large enough in size and slow in motion to be monitored; microscopic methods are very useful and powerful in research on colloidal systems. Recently, confocal laser microscopy has been known as a powerful tool to obtain information of real-space and real-time behaviors of colloidal suspensions. In particular, it is possible to exactly track individual colloids in three dimensions with confocal microscopy. In this article, we briefly discuss the usefulness of confocal microscopy in colloidal systems that are currently used as model systems to resolve important questions in materials science.

Cracked-Healing and Bending Strength of Si3N4 Ceramics (Si3N4 세라믹스의 균열 치유와 굽힘 강도 특성)

  • Nam, Ki-Woo;Park, Seung-Won;Do, Jae-Youn;Ahn, Seok-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.957-962
    • /
    • 2008
  • Crack-healing behavior of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and amount of additive $SiO_2$ colloidal. Results showed that optimum amount of additive $SiO_2$ colloidal and coating of $SiO_2$ colloidal on crack could significantly increase the bending strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the amount of additive $SiO_2$ colloidal. Crack healing strength was far the better cracked specimen with $SiO_2$ colloidal coating on crack surface. After heat treatment at the temperature 1,273 K in air, the crack morphology almost entirely disappeared by scanning prob microscope. At optimum healing temperature 1,273 K, the bending strength with additive $SiO_2$ colloidal 0.0 wt.% without $SiO_2$ colloidal coating recovered to the value of the smooth specimens at room temperature for the investigated crack sizes $100\;{\mu}m$. But that with $SiO_2$ colloidal coating increase up to 140 %. The amount of optimum additive $SiO_2$ colloidal was 1.3 wt.% and crack healed bending strength with $SiO_2$ colloidal coating increase up to 160 % to smooth specimen of additive $SiO_2$ colloidal 0.0 wt.%. Crack closure and rebonding of the crack due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in $Si_3N_4$ composite ceramics.

A Study on the Significance of the Colloidal Radiogold Disappearance Rate as a Simple Clinical Liver Function Test (임상간기능검사법(臨床肝機能檢査法)으로서의 교질형방사성금(膠質形放射性金)의 혈중소실율(血中消失率)의 의의(意義)에 관(關)한 연구(硏究))

  • Hong, Chang-Gi
    • The Korean Journal of Nuclear Medicine
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1969
  • Liver functions in diffuse parenchymal liver disease such as cirrhosis of the liver depend largely on the effective hepatic blood flow rather than on the individual cell functions. Clinical methods of measuring the hepatic blood flow were developed recently by the application of colloidal disappearance rate. In order to correlate the radiogold disappearance rate to conventional biochemical liver function tests, 21 normal subjects and 80 cases of cirrhosis of the liver were studied with both methods. The results are summarized as following: 1. The validity of external counting method to measure the blood disappearance rate of colloidal radiogold was confirmed by in vitro counting of the serial blood samples. 2. The blood disappearance rate of collidal radiogold was essentially the same. as the liver uptake rate of colloidal radiogold in normal and cirrhotic subjects with various degrees of functional disturbance. And it seemed there was no serious extrahepatic removal of the colloidal radiogold. 3. The disappearance rate of colloidal radiogold was not significantly changed by the posture change, but was enhanced by ingestion of 500 ml of water. 4. The disappearance rate of colloidal radiogold was not influenced by single dose of Telepaque, while BSP retention was increased after Telepaque. 5. The mean disappearance half time of colloidal radiogold in normal subjects was $2.49{\pm}0.391$(S.D.) minutes. The mean normal disappearance rate constant (K value) was $0.285{\pm}0.0428$(S.D.)/minute. 6. The colloidal radiogold disappearance half time was abnormally prolonged (over 3.2 min.) in $87.7{\pm}3.68$(S.D.) % of cirrhotic subjects. 7. In patients of liver cirrhosis the blood disappearance rate of colloidal radiogold correlated well to serum albumin and globulin levels and BSP retention which were considered to reflect functions of hepatic parenchymal cells. There was, however, no correlation between colloidal disappearance rate and thymol turbidity test, serum glutamic pyruvic transaminase, and serm alkaline phosphatase activities. The latters were considered to be associated with the activity of liver disease.

  • PDF

Antimicrobial Effects of Laundering and Colloidal Silver Treatment on a Cotton Fabric (은 용액 처리와 세탁 조건에 따른 면직물의 항균효과)

  • Chung, Hae-Won;Kim, Mi-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.7 no.3
    • /
    • pp.333-338
    • /
    • 2005
  • We examined the antimicrobial effects of the cotton fabrics which were laundered at different conditions and treated with a colloidal silver solution using Staphylococcus aureus. Colloidal silver solution was made from commercial colloidal silver generator by electrolysis. The fabric which was innoculated and washed with water before drying had no more Staphylococcus aureus, but which was innoculated and dried before washing with detergent solution had lower reduction rate. The fabric washed with oxygen bleach did not have an antimicrobial effect, but rinsed with 0.07% fabric softener showed antimicrobial properties. The fabric rinsed with 0.7ppm colloidal silver solution had better antimicrobial effects. As the treating concentration of silver solution increased, the antimicrobial property of the fabric was increased. The fabric treated with 5% silver solution sustained reflectance and whiteness of untreated fabric. The colloidal silver treated fabric lost antimicrobial property after washing because nano-sized silver particles were located on uneven fiber surface without chemical bonding forces.

Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever (기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정)

  • Je, Youngwan;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.