Browse > Article

Structure, stability and applications of colloidal crystals  

Yanagioka, Masaki (Department of Chemical Engineering, Stanford University)
Frank, Curtis W. (Department of Chemical Engineering, Stanford University)
Publication Information
Korea-Australia Rheology Journal / v.20, no.3, 2008 , pp. 97-107 More about this Journal
Abstract
This article presents an overview of current research activities that center on colloidal crystals resulting from self-assembly of surface-charged nanoparticles. It is organized into three parts: the first part discusses characterization of colloidal structures, the second part describes colloidal stability from the rheological aspects of colloidal crystals suspended in medium, and the third part highlights polymerized colloidal crystals as a promising application. Finally, we briefly discuss the directions of future research in this area.
Keywords
colloidal crystals; stability of colloids; crystal structure; rheology;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ackerson, B. J., J. B. Hayter, N. A. Clark and L. Cotter, 1986, Neutron scattering from charge stabilized suspensions undergoing shear, J. Chem. Phys. 84, 2344-2349   DOI
2 Gu, Z., A. Fujishima and O. Sato, 2002, Fabrication of high-quality opal films with controllable thickness, Chem. Mater. 14, 760-765   DOI   ScienceOn
3 Hiltner, P. A. and I. M. Krieger, 1969, Diffraction of light by ordered suspensions, J. Phys. Chem. 73, 2386-2389   DOI
4 Holtz, J. H. and S. A. Asher, 1997, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389, 829-832   DOI   ScienceOn
5 Kremer, K., M. O. Robbins and G. S. Grest, 1986, Phase diagram of Yukawa systems: model for charge-stabilized colloids, Phys. Rev. Lett. 57, 2694-2697   DOI   ScienceOn
6 Krieger, I. M. and T. J. Dougherty, 1959, A mechanism for nonnewtonian flow in suspensions of rigid spheres, J.Rheol. 3, 137-152   DOI
7 Maron, S. H. and F. Shiu Ming, 1955, Rheology of synthetic latex : V. flow behavior of low-temperature GR-S latex, J. Colloid Sci. 10, 482-493   DOI   ScienceOn
8 Matsuoka, H., K. Kakigami, N. Ise, Y. Kobayashi, Y. Machitani, T. Kikuchi and T. Kato, 1991, Ultra-small-angle x-ray-scattering study: preliminary experiments in colloidal suspensions, Proc. Nat. Acad. Sci. U.S.A. 88, 6618-6619
9 Medeiros e Silva, J. and B. J. Mokross, 1980, On the solid-like phase transition in crystals of polystyrene spheres in aqueous suspensions, Solid State Commun. 33, 493-494   DOI   ScienceOn
10 Monovoukas, Y. and A. Gast, 1989, The experimental phase diagram of charged colloidal suspensions, J. Colloid Interface Sci. 128, 533-548   DOI   ScienceOn
11 Paik, U., J. Y. Kim and V. A. Hackley, 2005, Rheological and electrokinetic behavior associated with concentrated nanosize silica hydrosols, Mater. Chem. Phys. 91, 205-211   DOI   ScienceOn
12 Pan, G., R. Kesavamoorthy and S. A. Asher, 1997, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys. Rev. Lett. 78, 3860-3863   DOI   ScienceOn
13 Pusey, P. N. and W. van Megen, 1986, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature 320, 340-342   DOI
14 Rundquist, P. A., P. Photinos, S. Jagannathan and S. A. Asher, 1989, Dynamical Bragg diffraction from crystalline colloidal arrays, J. Chem. Phys. 91, 4932-4941   DOI
15 Sharma, A. C., T. Jana, R. Kesavamoorthy, L. Shi, M. A. Virji, D. N. Finegold and S. A. Asher, 2004, A general photonic crystal sensing motif: creatinine in bodily fluids, J. Am. Chem. Soc. 126, 2776-2977
16 Tata, B. V. R. and S. S. Jena, 2006, Ordering, dynamics and phase transitions in charged colloids, Solid State Commun. 139, 562-580   DOI   ScienceOn
17 Craciun, L., P. J. Carreau, M. Heuzey, T. G. M. van de Ven and M. Moan, 2003, Rheological properties of concentrated latex suspensions of poly (styrene-butadiene), Rheol. Acta 42, 410-420
18 Yanagioka, M. and C. W. Frank, 2008, Effect of particle distribution on morphological and mechanical properties of filled hydrogel composites, Macromolecules 41, 5441-5450   DOI   ScienceOn
19 Arora Akhilesh K. and B. V. R. Tata, 1998, Interactions, structural ordering and phase transitions in colloidal dispersions, Adv. Colloid Interface Sci. 78, 49-97   DOI   ScienceOn
20 Gong, T. and D. W. M. Marr, 2001, Electrically switchable colloidal ordering in confined geometries, Langmuir 17, 2301-2304   DOI   ScienceOn
21 Goodwin, J. W., R. H. Ottewill and A. Parentlich, 1980, Optical examination of structured colloidal dispersions, J. Phys. Chem. 84, 1580-1586   DOI
22 Joannopoulos, J. D., P. R. Villeneuve and S. Fan, 1997, Photonic crystals: putting a new twist on light, Nature 386, 143-149   DOI   ScienceOn
23 Robbins, M. O., K. Kremer and G. S. Grest, 1988, Phase diagram and dynamics of Yukawa systems, J. Chem. Phys. 88, 3286-3312   DOI
24 Chow, E., S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou and A. Alleman, 2000, Three-dimensional control of light in a two-dimensional photonic crystal slab, Nature 407, 983-986   DOI   ScienceOn
25 Weissman, J. M., H. B. Sunkara, A. S. Tse and S. A. Asher, 1996, Thermally switchable periodicities and diffraction from mesoscopically ordered materials, Science 274, 959-963   DOI   ScienceOn
26 Wijnhoven, J. E. G. and W. L. Vos, 1998, Preparation of photonic crystals made of air spheres in titania, Science 281, 802-804   DOI   ScienceOn
27 Heimer, S. and D. Tezak, 2002, Structure of polydispersed colloids characterised by light scattering and electron microscopy, Adv. Colloid Interface Sci. 98, 1-23   DOI   ScienceOn
28 Mohanty, P. S., B. V. R. Tata, A. Toyotama and T. Sawada, 2005, Gas-solid coexistence in highly charged colloidal suspensions, Langmuir 21, 11678-11683   DOI   ScienceOn
29 Nakamura, H., M. Ishii, A. Tsukigase, M. Harada and H. Nakano, 2006, Close-packed colloidal crystalline arrays composed of silica spheres coated with titania, Langmuir 22, 1268-1272   DOI   ScienceOn
30 Carlson, R. J. and S. A. Asher, 1984, Characterization of optical diffraction and crystal structure in monodisperse polystyrene colloids, Appl. Spectrosc. 38, 297-304   DOI   ScienceOn
31 Reichelt, H., C. A. Faunce and H. H. Paradies, 2008, The phase diagram of charged colloidal lipid A-diphosphate dispersions, J. Phys. Chem. B 112, 3290-3293
32 Sunkara, H. B., J. M. Jethmalani and W. T. Ford, 1994, Composite of colloidal crystals of silica in poly(methyl methacrylate), Chem. Mater. 6, 362-364   DOI   ScienceOn
33 Konishi, T. and N. Ise, 2006, Rupture and regeneration of colloidal crystals as studied by two-dimensional ultra-small-angle x-ray scattering, Langmuir 22, 9843-9845   DOI   ScienceOn
34 Reese, C. E., M. E. Baltusavich, J. P. Keim and S. A. Asher, 2001, Development of an intelligent polymerized crystalline colloidal array colorimetric reagent, Anal. Chem. 73, 5038-5042   DOI   ScienceOn
35 Medebach, M. and P. Palberg, 2003, Phenomenology of colloidal crystal electrophoresis, J. Chem. Phys. 119, 3360-3370   DOI   ScienceOn
36 Stokes, R. J. and D. F. Evans, 1997, Fundamentals of interfacial engineering, Wiley, New York, p. 145
37 Flaugh, P. L., S. E. O'Donnell and S. A. Asher, 1984, Development of a new optical wavelength rejection filter: demonstration of its utility in Raman spectroscopy, Appl. Spectrosc. 38, 847-850   DOI   ScienceOn
38 Bonse, U. and M. Hart, 1965, Tailless x-ray single-crystal reflection curves obtained by multiple relfection, App. Phys. Lett. 7, 238-240   DOI
39 Butler, S. and P. Harrowel, 1995, The shear induced disordering transition in a colloidal crystal: nonequilibrium Brownian dynamic simulations, J. Chem. Phys. 103, 4653-4671   DOI   ScienceOn
40 Ackerson, B. J. and N. A. Clark, 1981, Shear-induced melting, Phys. Rev. Lett. 46, 123-126   DOI
41 Velev, O. D., T. A. Jede, R. F. Lobo and A. M. Lenhoff, 1997, Porous silica via colloidal crystallization, Nature 389, 447-448
42 Verhaegh, N. A. M., J. S. van Duijneveldt, A. van Blaaderen and H. N. W. Lekkerkerker, 1995, Direct observation of stacking disorder in a colloidal crystal, J. Chem. Phys. 102, 1416-1421   DOI   ScienceOn
43 Holtz, J. H., J. S. W. Holtz, C. H. Munro and S. A. Asher, 1998, Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials, Anal. Chem. 70, 780-791   DOI   ScienceOn
44 Hao, T., 2005, Electrorheological fluids: The non-aqueous suspensions, Elsevier, Amsterdam, p. 250
45 Norris, D. J. and Y. A. Vlasov, 2001, Chemical approaches to three-dimensional semiconductor photonic crystals, Adv. Mater. 13, 371-376   DOI   ScienceOn
46 Foulger, S. H., P. Jiang, A. C. Lattam, D. W. Smith and J. Ballato, 2001, Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays, Langmuir 17, 6023-6026   DOI   ScienceOn
47 Krieger, I. M. and F. M. O'Neill, 1968, Diffraction of light by arrays of colloidal spheres, J. Am. Chem. Soc. 90, 3114-3120   DOI
48 Hayter, J. B., R. Pynn, S. Charles, A. T. Skjeltorp, J. Trewhella, G. Stubbs and P. Timmins, 1989, Ordered macromolecular structures in ferrofluid mixtures, Phys. Rev. Lett. 62, 1667-1670   DOI   ScienceOn
49 Men, Y., J. Rieger, S. V. Roth, R. Gehrke and X. Kong, 2006, Non-affine structural evolution of soft colloidal crystalline latex films under stretching as observed via synchrotron x-ray scattering, Langmuir 22, 8285-8288   DOI   ScienceOn
50 Iwayama, Y., J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada and M. Yonese, 2003, Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region, Langmuir 19, 977-980   DOI   ScienceOn