Structure, stability and applications of colloidal crystals

  • Published : 2008.09.30

Abstract

This article presents an overview of current research activities that center on colloidal crystals resulting from self-assembly of surface-charged nanoparticles. It is organized into three parts: the first part discusses characterization of colloidal structures, the second part describes colloidal stability from the rheological aspects of colloidal crystals suspended in medium, and the third part highlights polymerized colloidal crystals as a promising application. Finally, we briefly discuss the directions of future research in this area.

Keywords

References

  1. Ackerson, B. J. and N. A. Clark, 1981, Shear-induced melting, Phys. Rev. Lett. 46, 123-126 https://doi.org/10.1103/PhysRevLett.46.123
  2. Ackerson, B. J., J. B. Hayter, N. A. Clark and L. Cotter, 1986, Neutron scattering from charge stabilized suspensions undergoing shear, J. Chem. Phys. 84, 2344-2349 https://doi.org/10.1063/1.450838
  3. Arora Akhilesh K. and B. V. R. Tata, 1998, Interactions, structural ordering and phase transitions in colloidal dispersions, Adv. Colloid Interface Sci. 78, 49-97 https://doi.org/10.1016/S0001-8686(98)00061-X
  4. Bonse, U. and M. Hart, 1965, Tailless x-ray single-crystal reflection curves obtained by multiple relfection, App. Phys. Lett. 7, 238-240 https://doi.org/10.1063/1.1754396
  5. Butler, S. and P. Harrowel, 1995, The shear induced disordering transition in a colloidal crystal: nonequilibrium Brownian dynamic simulations, J. Chem. Phys. 103, 4653-4671 https://doi.org/10.1063/1.470653
  6. Carlson, R. J. and S. A. Asher, 1984, Characterization of optical diffraction and crystal structure in monodisperse polystyrene colloids, Appl. Spectrosc. 38, 297-304 https://doi.org/10.1366/0003702844555548
  7. Chow, E., S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou and A. Alleman, 2000, Three-dimensional control of light in a two-dimensional photonic crystal slab, Nature 407, 983-986 https://doi.org/10.1038/35039583
  8. Craciun, L., P. J. Carreau, M. Heuzey, T. G. M. van de Ven and M. Moan, 2003, Rheological properties of concentrated latex suspensions of poly (styrene-butadiene), Rheol. Acta 42, 410-420
  9. Flaugh, P. L., S. E. O'Donnell and S. A. Asher, 1984, Development of a new optical wavelength rejection filter: demonstration of its utility in Raman spectroscopy, Appl. Spectrosc. 38, 847-850 https://doi.org/10.1366/0003702844554693
  10. Foulger, S. H., P. Jiang, A. C. Lattam, D. W. Smith and J. Ballato, 2001, Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays, Langmuir 17, 6023-6026 https://doi.org/10.1021/la010264e
  11. Gong, T. and D. W. M. Marr, 2001, Electrically switchable colloidal ordering in confined geometries, Langmuir 17, 2301-2304 https://doi.org/10.1021/la001740o
  12. Goodwin, J. W., R. H. Ottewill and A. Parentlich, 1980, Optical examination of structured colloidal dispersions, J. Phys. Chem. 84, 1580-1586 https://doi.org/10.1021/j100449a029
  13. Gu, Z., A. Fujishima and O. Sato, 2002, Fabrication of high-quality opal films with controllable thickness, Chem. Mater. 14, 760-765 https://doi.org/10.1021/cm0108435
  14. Hao, T., 2005, Electrorheological fluids: The non-aqueous suspensions, Elsevier, Amsterdam, p. 250
  15. Hayter, J. B., R. Pynn, S. Charles, A. T. Skjeltorp, J. Trewhella, G. Stubbs and P. Timmins, 1989, Ordered macromolecular structures in ferrofluid mixtures, Phys. Rev. Lett. 62, 1667-1670 https://doi.org/10.1103/PhysRevLett.62.1667
  16. Heimer, S. and D. Tezak, 2002, Structure of polydispersed colloids characterised by light scattering and electron microscopy, Adv. Colloid Interface Sci. 98, 1-23 https://doi.org/10.1016/S0001-8686(01)00090-2
  17. Hiltner, P. A. and I. M. Krieger, 1969, Diffraction of light by ordered suspensions, J. Phys. Chem. 73, 2386-2389 https://doi.org/10.1021/j100727a049
  18. Holtz, J. H. and S. A. Asher, 1997, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389, 829-832 https://doi.org/10.1038/39834
  19. Holtz, J. H., J. S. W. Holtz, C. H. Munro and S. A. Asher, 1998, Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials, Anal. Chem. 70, 780-791 https://doi.org/10.1021/ac970853i
  20. Iwayama, Y., J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada and M. Yonese, 2003, Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region, Langmuir 19, 977-980 https://doi.org/10.1021/la0207365
  21. Joannopoulos, J. D., P. R. Villeneuve and S. Fan, 1997, Photonic crystals: putting a new twist on light, Nature 386, 143-149 https://doi.org/10.1038/386143a0
  22. Konishi, T. and N. Ise, 2006, Rupture and regeneration of colloidal crystals as studied by two-dimensional ultra-small-angle x-ray scattering, Langmuir 22, 9843-9845 https://doi.org/10.1021/la061247y
  23. Kremer, K., M. O. Robbins and G. S. Grest, 1986, Phase diagram of Yukawa systems: model for charge-stabilized colloids, Phys. Rev. Lett. 57, 2694-2697 https://doi.org/10.1103/PhysRevLett.57.2694
  24. Krieger, I. M. and T. J. Dougherty, 1959, A mechanism for nonnewtonian flow in suspensions of rigid spheres, J.Rheol. 3, 137-152 https://doi.org/10.1122/1.548848
  25. Krieger, I. M. and F. M. O'Neill, 1968, Diffraction of light by arrays of colloidal spheres, J. Am. Chem. Soc. 90, 3114-3120 https://doi.org/10.1021/ja01014a025
  26. Maron, S. H. and F. Shiu Ming, 1955, Rheology of synthetic latex : V. flow behavior of low-temperature GR-S latex, J. Colloid Sci. 10, 482-493 https://doi.org/10.1016/0095-8522(55)90066-0
  27. Matsuoka, H., K. Kakigami, N. Ise, Y. Kobayashi, Y. Machitani, T. Kikuchi and T. Kato, 1991, Ultra-small-angle x-ray-scattering study: preliminary experiments in colloidal suspensions, Proc. Nat. Acad. Sci. U.S.A. 88, 6618-6619
  28. Medebach, M. and P. Palberg, 2003, Phenomenology of colloidal crystal electrophoresis, J. Chem. Phys. 119, 3360-3370 https://doi.org/10.1063/1.1586691
  29. Medeiros e Silva, J. and B. J. Mokross, 1980, On the solid-like phase transition in crystals of polystyrene spheres in aqueous suspensions, Solid State Commun. 33, 493-494 https://doi.org/10.1016/0038-1098(80)90843-1
  30. Men, Y., J. Rieger, S. V. Roth, R. Gehrke and X. Kong, 2006, Non-affine structural evolution of soft colloidal crystalline latex films under stretching as observed via synchrotron x-ray scattering, Langmuir 22, 8285-8288 https://doi.org/10.1021/la061829f
  31. Mohanty, P. S., B. V. R. Tata, A. Toyotama and T. Sawada, 2005, Gas-solid coexistence in highly charged colloidal suspensions, Langmuir 21, 11678-11683 https://doi.org/10.1021/la0518896
  32. Monovoukas, Y. and A. Gast, 1989, The experimental phase diagram of charged colloidal suspensions, J. Colloid Interface Sci. 128, 533-548 https://doi.org/10.1016/0021-9797(89)90368-8
  33. Nakamura, H., M. Ishii, A. Tsukigase, M. Harada and H. Nakano, 2006, Close-packed colloidal crystalline arrays composed of silica spheres coated with titania, Langmuir 22, 1268-1272 https://doi.org/10.1021/la052034w
  34. Norris, D. J. and Y. A. Vlasov, 2001, Chemical approaches to three-dimensional semiconductor photonic crystals, Adv. Mater. 13, 371-376 https://doi.org/10.1002/1521-4095(200103)13:6<371::AID-ADMA371>3.0.CO;2-K
  35. Paik, U., J. Y. Kim and V. A. Hackley, 2005, Rheological and electrokinetic behavior associated with concentrated nanosize silica hydrosols, Mater. Chem. Phys. 91, 205-211 https://doi.org/10.1016/j.matchemphys.2004.11.011
  36. Pan, G., R. Kesavamoorthy and S. A. Asher, 1997, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys. Rev. Lett. 78, 3860-3863 https://doi.org/10.1103/PhysRevLett.78.3860
  37. Pusey, P. N. and W. van Megen, 1986, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature 320, 340-342 https://doi.org/10.1038/320340a0
  38. Reese, C. E., M. E. Baltusavich, J. P. Keim and S. A. Asher, 2001, Development of an intelligent polymerized crystalline colloidal array colorimetric reagent, Anal. Chem. 73, 5038-5042 https://doi.org/10.1021/ac010667j
  39. Reichelt, H., C. A. Faunce and H. H. Paradies, 2008, The phase diagram of charged colloidal lipid A-diphosphate dispersions, J. Phys. Chem. B 112, 3290-3293
  40. Robbins, M. O., K. Kremer and G. S. Grest, 1988, Phase diagram and dynamics of Yukawa systems, J. Chem. Phys. 88, 3286-3312 https://doi.org/10.1063/1.453924
  41. Rundquist, P. A., P. Photinos, S. Jagannathan and S. A. Asher, 1989, Dynamical Bragg diffraction from crystalline colloidal arrays, J. Chem. Phys. 91, 4932-4941 https://doi.org/10.1063/1.456734
  42. Sharma, A. C., T. Jana, R. Kesavamoorthy, L. Shi, M. A. Virji, D. N. Finegold and S. A. Asher, 2004, A general photonic crystal sensing motif: creatinine in bodily fluids, J. Am. Chem. Soc. 126, 2776-2977
  43. Stokes, R. J. and D. F. Evans, 1997, Fundamentals of interfacial engineering, Wiley, New York, p. 145
  44. Sunkara, H. B., J. M. Jethmalani and W. T. Ford, 1994, Composite of colloidal crystals of silica in poly(methyl methacrylate), Chem. Mater. 6, 362-364 https://doi.org/10.1021/cm00040a006
  45. Tata, B. V. R. and S. S. Jena, 2006, Ordering, dynamics and phase transitions in charged colloids, Solid State Commun. 139, 562-580 https://doi.org/10.1016/j.ssc.2006.06.005
  46. Velev, O. D., T. A. Jede, R. F. Lobo and A. M. Lenhoff, 1997, Porous silica via colloidal crystallization, Nature 389, 447-448
  47. Verhaegh, N. A. M., J. S. van Duijneveldt, A. van Blaaderen and H. N. W. Lekkerkerker, 1995, Direct observation of stacking disorder in a colloidal crystal, J. Chem. Phys. 102, 1416-1421 https://doi.org/10.1063/1.468928
  48. Weissman, J. M., H. B. Sunkara, A. S. Tse and S. A. Asher, 1996, Thermally switchable periodicities and diffraction from mesoscopically ordered materials, Science 274, 959-963 https://doi.org/10.1126/science.274.5289.959
  49. Wijnhoven, J. E. G. and W. L. Vos, 1998, Preparation of photonic crystals made of air spheres in titania, Science 281, 802-804 https://doi.org/10.1126/science.281.5378.802
  50. Yanagioka, M. and C. W. Frank, 2008, Effect of particle distribution on morphological and mechanical properties of filled hydrogel composites, Macromolecules 41, 5441-5450 https://doi.org/10.1021/ma8003778