• Title/Summary/Keyword: collision safety

Search Result 872, Processing Time 0.032 seconds

Improvement of Navigation Lights of Middle and Small Size Ships for Marine Traffic Safety in Coastal Areas of Korea (연안 해상교통안전을 위한 중소형선 항해등 개선방안)

  • Song-Jin Na
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1129-1139
    • /
    • 2022
  • Collision accidents happen frequently. The majority of ships involved in collisions in the coastal areas of Korea are middle and small size ships. The proportion of collision accidents is only 9% of all types of marine accidents; however, the number of casualties resulting from collisions is 34.4% of all human life damages. Generally, as reported by the people involved in these collisions, the navigation lights of the opponent ships were poor and invisible when the accident happened even though the weather and visibility were good. Furthermore, there are many insistences for poor navigation light conditions of the opponent ship in the bay or harbor. Therefore, it is necessary to analyze the present conditions and safety of navigation lights. Therefore, in this study, we examined the rules and books of navigation lights and compared it to that of other transportation systems, such as aircraft, trains, and road vehicles. Furthermore, we analyzed the current marine traf ic circumstances and ship collision accidents that happened in the past 5 years. Additionally, a questionnaire was prepared to gather the opinion of ship experts and secure the objectivity for improvement methods of navigation lights. Finally, methods to improve the navigation lights on ships were devised.

Safety evaluation of the domestic Offset procedure using the unidirectional dual airway collision risk model (단방향 복선 항공로 안전평가모델을 활용한 국내 Offset 절차 안전도 분석)

  • Se-eun Park;Hui-yang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.356-364
    • /
    • 2023
  • Sophisticated Air Navigation System has contributed to enhancing the capacity of airspace capacity, leading to an efficient airspace environment. However, it has acted as a factor increasing the probability of collision. When an aircraft fails to maintain vertical separation and instead exhibits lateral positional errors, it does not necessarily lead to a collision. However, as the lateral positional accuracy increases, the randomness of aircraft positions decrease, resulting in an elevated probability of collisions. Consequently, The International Civil Aviation Organization has introduced Strategic Lateral Offset Procedures(SLOP), intentionally deviating aircraft from the centerline of airways. Likewise, South Korea also operates Offset procedure. The Y579 was operated using the Offset before its conversion to a dual airway and the analysis of the Offset track revealed that it was being operated similarly to a unidirectional dual airway. This paper develops a safety assessment methodology applicable to unidirectional dual airways, and applies it to perform a safety assessment of the Y579 Offset procedure.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

Introduction to an Evaluation Method for Crashworthiness of Korean Tilting Train Express (한국형 고속틸팅열차의 충돌안전도 평가기법 소개)

  • Jung H.S.;Kwon T.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.318-321
    • /
    • 2005
  • Crashworthy design of a train is a systematic approach to ensure the safety of passengers and crews in railway transportation for the prescribed accident scenarios. This approach needs new structural arrangements and designs to absorb higher levels of impact energy in a controlled manner and interior designs to minimize passenger injuries. In this paper, an evaluation method for crashworthiness of Korean tilting train express is introduced. Crush characteristics for each part of tilting train express are evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. Based on a head-on collision and a level crossing collision scenarios, the crash behaviors of tilting train express are evaluated numerically using full-rake collision simulations.

  • PDF

Development of Touch Probe Collision Avoidance Algorithm for OMM Using Offset Surface and Dynamic Error Compensation (OMM 에서 Offset Surface 를 이용한 접촉식 Probe 의 충돌회피 알고리즘 개발 및 동적 에러 보정)

  • 정석현;김동우;조명우;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.323-326
    • /
    • 2004
  • In this study, the inspection path which is considered to free collision is generated by offset surface. When the inspection is executed, the consideration of machine dynamic error increases a precision. Dynamic error is measured on CNC machine bed changing of weight work price. Offset surface is safety space about collision. Because the danger of probe-collision is excluded in Offset surface, it is possible to rapid feed of probe and reduced inspection time. The Program which is possible to simulate using CAIP and is confirmed through actual experiment.

  • PDF

A study on establishing the accident scenarios for crashworthiness of rolling stocks (철도차량의 충돌안전도 설계를 위한 사고 시나리오 제정 연구)

  • Koo, Jeong-Seo;Cho, Hyun-Jik;Kwon, Tae-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.661-670
    • /
    • 2007
  • In this study, collision accident scenarios are derived for crashworthy design of rolling stocks because the detailed guidelines to complement domestic safety regulations with respect to collision accidents of rolling stocks are under preparation. Through this study, several collision accident scenarios are broadly investigated for those of advanced countries like USA, UK and EU. Next, the basic engineering considerations which are necessary to derive the collision accident scenarios are reviewed and analysed in some details. Finally, two collision accident scenarios are derived considering the circumstances of domestic railroads.

  • PDF

Obstacle Awareness and Collision Avoidance Radar Sensor System for Smart UAV

  • Kwag, Young K.;Hwang, Kwang Y.;Kang, Jung W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.97-109
    • /
    • 2005
  • In this paper, the critical requirement for obstacle awareness and avoidance is assessed with the compliance of the equivalent level of safety regulation, and then the collision avoidance sensor system is presented with the key design parameters for the requirement of the smart unmanned aerial vehicle in low-altitude flight. Based on the assessment of various sensors, small-sized radar sensor is selected for the suitable candidate due to the real-time range and range-rate acquisition capability of the stationary and moving aircraft even under all-weather environments. Through the performance analysis for the system requirement, the conceptual design result of radar sensor model is proposed with the range detection probability and collision avoidance mode is established based on the time-to-collision, which is analyzed by collision scenario.

Crash Simulation of Rolling Stock (철도차량 충돌 시뮬레이션)

  • 김필환;이장욱;김진태;김창수
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.401-407
    • /
    • 1998
  • Recently, as the railway vehicles become speedy and massive, the collision is being regarded as an important factor for the assessment of safety for passenger. And the study of collision is being in progress more actively in advanced nations. In this study, the collision analysis is performed by using non-linear dynamic finite element program PAM-CRASH. The carbody used in analysis is made of Aluminum AL6005A to realize lightweight, and designed and manufactured by DHI (Daewoo Heavy Industry) lately. For the accuracy of the result in the practical collision, the experiment of material properties has been performed. The result of the analysis shows the underframe of rolling stock is the most important part as a collision energy absorbing structure. Further study is needed for optimal design which enables the carbody shell structure to disperse absorbing energy adequately.

  • PDF

A Study on the Influence of Navigational Environment on Mariner's Behavior for Collision Avoidance

  • Park, Jung-Sun;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • The safety degree of navigation for collision avoidance is closely related with the combination between mariner's behavior and navigational environment. The condition of navigational environment is mainly decided by navigable waters, ship traffic, rule of road, sea state, weather and so on. Especially, the condition of navigable waters and ship traffic in navigational environment are ones of the important factors to attain safe navigation when mariners are underway and crossing, head on or overtaking situation. Thus this paper is to analyze the characteristics of mariner's behavior for collision avoidance caused by ship traffic and navigable waters by analyzing the contents of questionnaire and the results of international collaborative research. As a result, it can be concluded that the density of ship traffic and the area of navigable waters affect mariner's ship handling for collision avoidance.

A Study on Techniques for Evaluating Collision Acceleration of Rollingstock (열차의 충돌가속도 크기를 평가하기 위한 방법 연구)

  • Kim, Woon-Gon;Kim, Geo-Young;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.233-237
    • /
    • 2009
  • In this study, we suggest that several approaches to evaluate the collision acceleration value of a car in the article 35 and the guideline 16 of Korean rolling stock safety regulation. There are various methods to evaluate collision acceleration such as; a displacement comparison method by the double integration of filtered acceleration data, a velocity comparison method by the integration of filtered acceleration data, an analysis method of time-velocity curve, or a differential method of time-velocity curve. We compared these methods one another using 1D dynamic simulation model composed of nonlinear dampers, springs and bars, and masses. Also, we applied these methods to a hybrid model, which is made of 3D shell element model and 2D collision dynamics model, in order to evaluate whether 1D force-displacement curve modeling for energy absorbing structures have an effect on the collision acceleration levels or not.

  • PDF