• 제목/요약/키워드: collision Avoidance

검색결과 832건 처리시간 0.023초

Collision Avoidance Maneuver Planning Using GA for LEO and GEO Satellite Maintained in Keeping Area

  • Lee, Sang-Cherl;Kim, Hae-Dong;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.474-483
    • /
    • 2012
  • In this paper, a collision avoidance maneuver was sought for low Earth orbit (LEO) and geostationary Earth orbit (GEO) satellites maintained in a keeping area. A genetic algorithm was used to obtain both the maneuver start time and the delta-V to reduce the probability of collision with uncontrolled space objects or debris. Numerical simulations demonstrated the feasibility of the proposed algorithm for both LEO satellites and GEO satellites.

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권3호
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

장애물의 상대속도를 반영한 포텐셜필드 기반 무인항공기 충돌회피 (Collision Avoidance for UAV using Potential Field based on Relative Velocity of Obstacles)

  • 안승규;이동진
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.47-53
    • /
    • 2018
  • In this paper, we investigate a collision avoidance algorithm for unmanned aerial vehicles using potential field based on the relative velocity of obstacles. The potential field consists of the attraction force and the repulsive force that are generated for the target and the obstacles. And the field can be classified into the attractive potential field generated by the target and the repulsive potential field generated by the obstacle, respectively. In this study, we construct an attractive potential field as a function of the distance between the UAV and the target position. On the other hand, a repulsive potential field is created by a function of distance and the relative velocity of the obstacle with respect to the UAV. The proposed potential field based collision avoidance algorithm is evaluate through simulations.

A Study on Efficient Infrastructure Architecture for Intersection Collision Avoidance Associated with Sensor Networks

  • 황광일
    • 한국통신학회논문지
    • /
    • 제33권8B호
    • /
    • pp.657-666
    • /
    • 2008
  • The intersection collision avoidance service among various telematics application services is regarded as one of the most critical services with regard to safety. In such safety applications, real-time, correct transmission of service is required. In this paper, we study on efficient infrastructure architecture for intersection collision avoidance using a cooperative mechanism between vehicles and wireless infrastructure. In particular, we propose an infrastructure, called CISN (Cooperative Infrastructure associated with Sensor Networks), in which proper numbers of sensor nodes are deployed on each road, surrounding the intersection. In the proposed architecture, overall service performance is influenced by various parameters consisting of the infrastructure, such as the number of deployed sensor nodes, radio range and broadcast interval of base station, and so on. In order to test the feasibility of the CISN model in advance, and to evaluate the correctness and real-time transmission ability, an intersection sensor deployment simulator is developed. Through various simulations on several environments, we identify optimal points of some critical parameters to build the most desirable CISN.

골격지도에서 개별 목표를 갖는 두 이동로봇의 충돌 회피 알고리즘 (A Collision Avoidance Algorithm for Two Mobile Robots with Independent Goals in Skeleton Map)

  • 양동훈;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.700-705
    • /
    • 2006
  • This paper proposes a collision avoidance algorithm for two mobile robots with independent goals in a same workspace. Using skeleton map, an environment is presented as a graph consisting of nodes and arcs. Robots generate the shortest set of paths using the combination of objective functions of the two robots. Path for collision avoidance of a robot can be selected among three class; the shortest path, detour, paths with a waiting time at safety points around crossing points. Simulation results are presented to verify the efficiency of the proposed algorithms.

모델 불확실성 및 외란을 갖는 이동 로봇들을 위한 적응 슬라이딩 모드 군집 제어 및 충돌 회피 기법 (Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance)

  • 박봉석;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1038-1043
    • /
    • 2010
  • In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.

상대운동방정식 기반의 우주파편 충돌회피기동의 해석적 설계기법 (Analytical Design of the Space Debris Collision Avoidance Maneuver based on Relative Dynamics)

  • 조동현;김해동;이상철
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1048-1052
    • /
    • 2013
  • Recently, many countries have attempted to protect their satellites from damage caused by space debris. To design these collision avoidance maneuvers, optimal algorithms based on numerical simulations are widely used due to their practicality. However, these algorithms often require a great expenditure of time in order to find solutions. Therefore, in this paper, a simple analytical strategy is suggested to find the initial prediction required to find these numerical solutions for collision avoidance maneuvers by using relative dynamics for the rendezvous and docking problems. For this analytical strategy, the simple dynamics on the CW (Clohessy-Wiltshire) frame is adopted as an attempt to introduce an analytical solution.

지능형 네트워크를 이용한 이동 로봇의 이동장애물 회피 응용 (Moving Obstacles Collision Avoidance of a Mobile Robot using an Intelligent Network)

  • 박윤명;하달영;최부귀
    • 융합신호처리학회논문지
    • /
    • 제3권2호
    • /
    • pp.64-70
    • /
    • 2002
  • This paper proposes a new construction method of neural networks. The construction method consists of two fundmental ideas, which are a parallel selection-style evaluation and rules evolution. A new collision avoidance algorithm using genetic and neural network is proposed to avoid moving obstacles such as mobile robots. The input parameters of this algorithm is position of moving obstacles and target. Output is a regenerated direction of mobile robot. This algorithm is very simple and so, it is available to application of real time process. The pattern of collision avoidance is learned through test execution.

  • PDF