International Journal of Concrete Structures and Materials
/
v.2
no.2
/
pp.137-143
/
2008
In recent years, much research work has been performed on durability design and long-term performance of concrete structures in marine environments. In particular, the development of new procedures for probability-based durability design has been shown to provide a more realistic basis for the analysis. This approach has been successfully applied to several new concrete structures, where requirements for a more controlled durability and service life have been specified. For reinforced concrete structures in a marine environment, it is commonly assumed that the dominant degradation mechanism is the corrosion of the reinforcement due to the presence of chlorides. The design approach is based on the verification of durability limit states, examples of which are: depassivation of reinforcement, cracking and spalling due to corrosion, and collapse due to cross section loss of reinforcement. With this design approach the probability of failure can be determined as a function of time. In the present paper, a probability-based durability performance analysis is used in order to demonstrate the importance of the durability design approach of concrete structures in marine environments. In addition, the sensitivity of the various durability parameters affecting and controlling the durability of concrete structures in a marine environment is studied. Results show that the potential of this approach to assist durability design decisions making process is great. Based the crucial information generated, it is possible to prolong the service life of structures while simultaneously optimizing the final design solution.
The purpose of this study is to present emergency rehabilitation, cause and the countermeasure of reinforcement about reinforced retaining wall and the slope collapse of the phyllite ground. The study area is broken easily because this area has rock mass discontinuity such as stratification, foliation, joint and fold. And this area consists of the ground where it happens easily to the failure of structure like reinforced retaining wall because of the phyllite ground sensitive to weathering. Counterweight fill in front of reinforced retaining wall was performed as emergency rehabilitation about displacement of reinforced retaining wall and the failure at the rear of slope on phyllite ground. After that, additional displacement didn't occur. Boring and geophysical exploration were launched to present emergency rehabilitation and develop the long-term method of reinforcement. This could grasp anticipated range of the failure section and identify internal and external factors of the cause of the slope collapse. Several methods of reinforcement were suggested by conducting the numerical analysis. When conducting design and construction of major structures at the ground which has complex discontinuities, the precise site investigation should be conducted. During construction, immediate action for over-displacement should be taken by performing the periodic measurement.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.36
no.2
/
pp.50-60
/
2024
To promote the application of reliability-based design within the Korean coastal engineering community, the author conducted reliability analyses and optimized the design of a vertical-type breakwater, considering multiple limit states in the seas off of Pusan and Gunsan - two representative ports in Korea. In this process, rather than relying on design waves of a specific return period, the author intentionally avoided such constraints. Instead, the author characterized the uncertainties associated with wave force, lift force, and overturning moment - key factors significantly influencing the integrity of a vertical-type breakwater. This characterization was achieved by employing a probabilistic model derived from the frequency analysis results of long-term in-situ wave data. The limit state of the vertical-type breakwater encompassed sliding, overturning, and collapse failure, with the close interrelation between wave force, lift force, and moment described using the Nataf joint probability distribution. Simulation results indicate, as expected, that considering only sliding failure underestimates the failure probability. Furthermore, it was shown that the failure probability of vertical-type breakwaters cannot be consistently secured using design waves with a specific return period. In contrast, breakwaters optimally designed to meet the reliability index requirement of 𝛽-3.5 to 4 consistently achieve a consistent failure probability across all sea areas.
Journal of the Earthquake Engineering Society of Korea
/
v.16
no.3
/
pp.43-50
/
2012
The FEMA P695 document proposed a methodology to evaluate the collapse safety of a structure and the validity of the seismic design coefficients. In this study, the seismic performance of six- and twelve-story staggered wall structures with a middle corridor was evaluated based on the FEMA P695 procedure. The analysis results of the prototype structures were compared with those of the structures with an increased coupling beam depth or an increased re-bar ratio of the coupling beams in order to investigate the effect of retrofit. The adjusted collapse margin ratios (ACMR) of the model structures obtained from incremental dynamic analyses turned out to be larger than the specified limit states of an ACMR of 20%, which implies that the analysis model structures have enough strength against design level earthquakes. It was also observed that the increase in the re-bar ratio of the coupling beams between the staggered walls was more effective in increasing the ACMR than an increase in the depth of the coupling beams.
In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".
The pre-engineered building(PEB) construction has been gradually applied to single story buildings as a practical and efficient alternative to conventional buildings. However, there has been a few structure collapse due to suddenly excessive load. Although a structure design requires accurate and professional skills, the PEB system tends to be designed simply because of complexation of structural analysis for connections. This paper shows the finite element analysis(FEA) using ABAQUS software on bolted connection which was previously tested. The FEA condignly simulated the behavior of bolted connection in PEB system and was in close agreement with experimental results. Then the stiffness reduction factor of the bolted joints that can be used in the actual design is presented through the analysis of the joint parameters.
Transactions of the Korean Society of Mechanical Engineers A
/
v.37
no.11
/
pp.1415-1421
/
2013
Recently, to resolve problems regarding legal liability for accidents and disasters, various simulation techniques such as F.E.M. and F.V.M. have been used in the field of forensic engineering. In this study, we performed mechanical structure analysis using ADINA to investigate the cause of bridge collapse accidents. Such accidents occurred owing to modified and missing processes in comparison with the original design while filling with concrete. Modified and missing processes cause buckling of the upper plate and twisting of the main girder. Through this study, we determine the exact cause of bridge collapse by comparing the evaluation of the structure stability of the original design with the evaluation of the structure stability of the modified and missing process using ADINA structure analysis. Hence, this result indicates that buckling prediction through FEA is the most effective method.
In seismic fragility and risk analysis, the definition of structural limit state (LS) capacities is of crucial importance. Traditionally, LS capacities are defined according to design code provisions or using deterministic pushover analysis without considering the inherent randomness of structural parameters. To assess the effects of structural randomness on LS capacities, ten structural parameters that include material strengths and gravity loads are considered as random variables, and a probabilistic pushover method based on a correlation-controlled Latin hypercube sampling technique is used to estimate the uncertainties in LS capacities for four typical reinforced concrete frame buildings. A series of ten LSs are identified from the pushover curves based on the design-code-given thresholds and the available damage-controlled criteria. The obtained LS capacities are further represented by a lognormal model with the median $m_C$ and the dispersion ${\beta}_C$. The results show that structural uncertainties have limited influence on $m_C$ for the LSs other than that near collapse. The commonly used assumption of ${\beta}_C$ between 0.25 and 0.30 overestimates the uncertainties in LS capacities for each individual building, but they are suitable for a building group with moderate damages. A low uncertainty as ${\beta}_C=0.1{\sim}0.15$ is adequate for the LSs associated with slight damages of structures, while a large uncertainty as ${\beta}_C=0.40{\sim}0.45$ is suggested for the LSs near collapse.
Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.
Sudipta Chakraborty;Md. Rajibul Islam;Dookie Kim;Jeong Young Lee
Architectural research
/
v.25
no.1
/
pp.1-9
/
2023
Structural ageing influences the structural performance in a negative way by reducing the seismic resilience of the structure which makes it a major concern around the world. Retrofitting is considered to be a pragmatic and feasible solution to address this issue. Numerous retrofitting techniques are devised by researchers over the years. The viability of using steel bracings as retrofitting component is evaluated on a G+30 storied building model designed according to ACI318-14 and ASCE 7-16. Four different types of steel bracing arrangements (V, Inverted V/ Chevron, Cross/ X, Diagonal) are assessed in the model developed in commercial nu-merical analysis software while considering both material and geometric nonlinearities. Reducing displacement and cost in the structures indicates that the design is safe and economical. Therefore, the purpose of this article is to find the best bracing system that causes minimum displacement, which indicates maximum lateral stiffness. To evaluate the seismic vulnerability of each system, incremental dynamic analysis was conducted to develop fragility curves, followed by the formation of collapse margin ratio (CMR) as stipulated in FEMA P695 and finally, a cost estimation was made for each system. The outcomes revealed that the effects of ge-ometric nonlinearity tend to evoke hazardous consequences if not considered in the structural design. Probabilistic seismic and economic probes indicated the superior performance of V braced frame system and its competency to be a germane technique for retrofitting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.