• Title/Summary/Keyword: collagen peptides

Search Result 50, Processing Time 0.03 seconds

Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta

  • Jung, Kyung-Hun;Choi, Ye-Chul;Chun, Ji-Yeon;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • This study investigated the effects of three proteases (trypsin, pepsin and chymotrypsin) on the hydrolysis efficiency of porcine placenta and the molecular weight (Mw) distributions of the placental hydrolysates. Because placenta was made up of insoluble collagen, the placenta was gelatinized by applying thermal treatment at $90^{\circ}C$ for 1 h and used as the sample. The placental hydrolyzing activities of the enzymes at varying concentrations and incubation times were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC). Based on the SDS-PAGE, the best placental hydrolysis efficiency was observed in trypsin treatments where all peptide bands disappeared after 1 h of incubation as compared to 6 h of chymotrypsin. Pepsin hardly hydrolyzed the placenta as compared to the other two enzymes. The Mw distribution revealed that the trypsin produced placental peptides with Mw of 106 and 500 Da. Peptides produced by chymotrypsin exhibited broad ranges of Mw distribution (1-20 kDa), while the pepsin treatment showed Mw greater than 7 kDa. For comparisons of pre-treatments, the subcritical water processing (37.5 MPa and $200^{\circ}C$) of raw placenta improved the efficiency of tryptic digestions to a greater level than that of a preheating treatment ($90^{\circ}C$ for 1 h). Consequently, subcritical water processing followed by enzymatic digestions has the potential of an advanced collagen hydrolysis technique.

COMPARISON OF THE BIOMECHANICAL AND BIOSYNTHETIC BEHAVIOR OF NORMAL HUMAN FIBROBLASTS AND FIBROBLASTS ISSUE FROM A FOREHEAD WRINKLE

  • Jouandeaud, M.;Viennet, C.;Chadebec, P.;Bordes, S.;Closs, B.;Humbert, P.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.192-202
    • /
    • 2003
  • The wrinkles correspond to the most obvious expression of skin ageing and are manifested by changes on the organization and dermal structure. In the extracellular matrix, decreased quantities of collagens and glycosaminoglycans as well as a deterioration of the fibrillary network is noted, result in a reduction of dermal thickness. In addition, the activity of the collagenases increases in contrast to the synthesis of collagen fibers. Nor are cells spared during the aging process. We thus studied and compared the contractile capacity as well as the synthesis capacity of normal human fibroblasts and human fibroblasts obtained from biopsies of forehead wrinkles. The capacity of the fibroblasts to be adhered to the collagen network and to maintain a three-dimensional structure of dermis was studied on a model of equivalent dermis. The metabolic activity was studied by evaluating the capacities of synthesis of collagen I, main component of dermis. Human fibroblasts resulting from the forehead wrinkle contract less the gel of collagen than the normal human fibroblasts and present an activity of biosynthesis of collagen I less important than normal human fibroblasts. These results show that fibroblasts with aging present a deceleration of their metabolic activity and lose their capacity of adhesion to collagen fibers thus limiting the possibility of organizing the dermal tissue. We investigated the potential of an active ingredient able to compensate for the reduction of the metabolic activity and to restore the contractile capacity of fibroblasts obtained from forehead wrinkles. This effect was compared with a reference molecule: the vitamin C.

  • PDF

Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function (광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성)

  • Kang, You-an;Jin, Sang-Keun;Ko, Jonghyun;Choi, Yeung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

ACE-Inhibitory Properties of Proteolytic Hydrolysates from Giant Jellyfish Nemopilema nomurai

  • Yoon, Ho-Dong;Kim, Yeon-Kye;Lim, Chi-Won;Yeun, So-Mi;Lee, Moon-Hee;Moon, Ho-Sung;Yoon, Na-Young;Park, Hee-Yeon;Lee, Doo-Seog
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.174-178
    • /
    • 2011
  • This study aimed to determine the degree of hydrolysis and angiotensin-I-converting enzyme (ACE)-inhibitory activity of Giant Jellyfish Nemopilema nomurai (jellyfish) hydrolysates. The degree of hydrolysis using six proteolytic enzymes (Alcalase, Flavozyme, Neutrase, papain, Protamex, and trypsin) ranged from 13.1-36.8% and the inhibitory activities from 20.46-79.58%. Using papain hydrolysate, we newly isolated and characterized ACE-inhibitory peptides with a molecular weight of 3,000-5,000 Da that originated from jellyfish collagen. The purified peptide (FII-b) was predicted to be produced from an alpha-2 fragment of the type IV collagen of jellyfish. The N-terminal sequence of FII-b was Asp-Pro-Gly-Leu-Glu-Gly-Ala-His-Gly- and showed 87% identity to the collagen type IV alpha-2 fragment of Rattus norvegicus and a predicted protein from Nematostella vectensis, indicating that the ACE-inhibitory peptide originated from the collagen hydrolysate and had an $IC_{50}$ value of 3.8 ${\mu}g$/mL. The primary structure of the fragment is now being studied; this peptide represents an interesting new type of ACE inhibitor and will provide knowledge of the potential applications of jellyfish components as therapies for hypertension.

The Oxidative Modification of COL6A1 in Membrane Proteins of Ovarian Cancer Patients

  • Yang, Hee-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2012
  • Ovarian cancer is the most lethal gynecological malignancy, and specific biomarkers are important needed to improve diagnosis, prognosis, and to forecast and monitor treatment efficiency. There are a lot of pathological factors, including reactive oxygen species (ROS), involved in the process of cancer initiation and progression. The oxidative modification of proteins by ROS is implicated in the etiology or progression of disorders and diseases. In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) revealed that a variety of proteins were differentially oxidized between normal and tumor tissues of ovarian cancer patients. To identify cysteine oxidation-sensitive proteins in ovarian cancer patients, we performed comparative analysis by nano-UPLC-$MS^E$ shotgun proteomics. We found oxidation-sensitive 22 proteins from 41 peptides containing cysteine oxidation. Using Ingenuity program, these proteins identified were established with canonical network related to cytoskeletal network, cellular organization and maintenance, and metabolism. Among oxidation-sensitive proteins, the modification pattern of Collagen alpha-1(VI) chain (COL6A1) was firstly confirmed between normal and tumor tissues of patients by 2-DE western blotting. This result suggested that COL6A1 might have cysteine oxidative modification in tumor tissue of ovarian cancer patients.

Anti-inflammatory and Wrinkle Improvement Effects of Peptides from Ginseng Berry Amino Acidic Complex (진생베리 아미노산 복합체로부터 분리한 펩타이드의 항염, 주름개선 효과)

  • Kang, Sang Moon;Park, Chung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.299-306
    • /
    • 2019
  • Ginseng berry (GB) contains Ginsenoside Re and has anti-inflammatory and anti-wrinkle properties. In this study, TLC fractions 1, 2, and 4 of the ginseng berry amino acid complex were identified and analyzed by HPLC. And identified a peptide (AP-1) by LC/MASS analysis of fraction 1. The anti-inflammatory activity was confirmed by investigating the inhibitory effect of AP-1 on NO production. In addition, collagen synthesis using procollagen type I C-peptide (PIP) ELISA kit was 50% higher effective than that of the control group. From these results, the peptide isolated from ginseng berry amino acid complex is considered to have anti-inflammatory and anti-wrinkle effect, and may be useful as an anti-inflammatory and anti-aging cosmetic raw material.

Anti-wrinkle Activity of Low Molecular Weight Peptides Derived from the Collagen Isolated from Asterias amurensis (불가사리(Asterias amurensis) 콜라겐 유래 저분자 펩타이드의 피부주름 억제활성)

  • Kwon, Min-Chul;Kim, Cheol-Hee;Kim, Hyo-Sung;Syed, Abdul Qadir;Hwang, Bo-Yong;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.625-629
    • /
    • 2007
  • This study was carried out to investigate the anti-wrinkle effects of peptides derived from collagens isolated from Asterias amurensis, which was collected in the East Sea. The molecular weights of the peptides were between 10-50 kDa, as determined through sephadek G-75 gel. The cytotoxicities against CCD-986sk cells and HEL-299 cells were measured using the MTT assay. The cytotoxicity of all the fractions(F1: Fraction No. 4-13, 116 kDa; F2: Fraction No. 25-30, 100 kDa; F3: Fraction No. 45-55, 58 kDa; F4: Fraction No. 59-63, 43 kDa; F5: Fraction No. 79-90, 24 kDa) was less than 25%, by the addition of 1.0 mg/mL. These peptides did not show any adverse effects on human skin cells. In the presence of F1 at 1.0 mg/mL, matrix metalloproteinase-1 (MMP-1) expression of UVA-induced human normal fibroblasts was reduced to 34.8%. Overall, the results seem to suggest that peptides of approximately 20 kDa have superior anti-wrinkle effects.

Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion

  • de Moraes, Izadora Quintela Souza;do Nascimento, Ticiano Gomes;da Silva, Antonio Thomas;de Lira, Lilian Maria Santos Silva;Parolia, Abhishek;de Moraes Porto, Isabel Cristina Celerino
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.31.1-31.20
    • /
    • 2020
  • Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were "matrix metalloproteinases", "collagen", and "dentin" and "hybrid layer". MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.

Analysis of Procollagen Biosynthesis of Functional Peptides Utilizing Stiffness Controlled Artificial Skin Dermis (강도가 제어된 인공피부 진피를 활용한 기능성 펩타이드의 프로콜라겐 생합성 분석)

  • Byun, Jina;Shin, Sung Gyu;Han, Sa Ra;Cho, Sung Woo;Lim, Jun Woo;Jeong, Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.419-425
    • /
    • 2018
  • In this study, cross-linked collagen gels were successfully prepared with varying of elastic modulus from 0.7 to 17.7 kPa using a chemical cross-linker. Then, human dermal fibroblasts were encapsulated into the porous pores introduced into the gels, and cell growth and behavior were examined by gel's mechanical properties. Specifically, increasing elastic modulus of the gel led to decreases in procollagen synthesis from 47 to 32 ng. In addition, there could be optimum elastic modulus for procollagen production, when the gels were treated with adenosine. However, interestingly, this study discovered that the procollagen production level was not influenced by the elastic modulus of the gel for functional peptide. In conclusion, these results would be highly useful for designing reconstructed skins with varying of elastic modulus to examine functional materials in cosmetics.

Construction of a Cell-Adhesive Nanofiber Substratum by Incorporating a Small Molecule

  • Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • Electrospun nanofibers are being widely used as a substratum for mammalian cell culture owing to their structural similarity to collagen fibers found in extracellular matrices of mammalian cells and tissues. Especially, development of diverse synthetic polymers has expanded use of electrospun nanofibers for constructing cell culture substrata. Synthetic polymers have several benefits comparing to natural polymer for their structural consistency, low cost, and capability for blending with other polymers or small molecules to enhance their structural integrity or add biological functions. PMGI (polymethylglutarimide) is one of the synthetic polymers that produced a rigid nanofiber that enables incorporation of small molecules, peptides, and gold nanoparticles through co-electrospinning process, during which the materials are fixed without any chemical modifications in the PMGI nanofibers by maintaining their activities. Using the phenomenon of PMGI nanofiber, here I introduce a construction method of a nanofiber substratum having cell-affinity function towards a pluripotent stem cell by incorporating a small molecule in the PMGI nanofiber.